Abstract
The identification of host protein substrates is key to understanding effector glycosyltransferases secreted by pathogenic bacteria and to using them for glycoprotein engineering. Here we report a chemical method for tagging, enrichment, and site-specific proteomic profiling of effector-modified proteins in host cells. Using this method, we discover that Legionella effector SetA α-O-glucosylates various eukaryotic proteins by recognizing a S/T-X-L-P/G sequence motif, which can be exploited to site-specifically introduce O-glucose on recombinant proteins.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



Data availability
The data that support the findings of this study are available from the corresponding author on reasonable request.
References
- 1.
Schmaltz, R. M., Hanson, S. R. & Wong, C.-H. Chem. Rev. 111, 4259–4307 (2011).
- 2.
Moremen, K. W. et al. Nat. Chem. Biol. 14, 156–162 (2017).
- 3.
Nothaft, H. & Szymanski, C. M. Nat. Rev. Microbiol. 8, 765–778 (2010).
- 4.
Keys, T. G. & Aebi, M. Curr. Opin. Syst. Biol. 5, 23–31 (2017).
- 5.
Schwarz, F. et al. Nat. Chem. Biol. 6, 264–266 (2010).
- 6.
Valderrama-Rincon, J. D. et al. Nat. Chem. Biol. 8, 434–436 (2012).
- 7.
Naegeli, A. et al. J. Biol. Chem. 289, 24521–24532 (2014).
- 8.
Xu, Y. et al. Chem. Commun. (Camb.) 53, 9075–9077 (2017).
- 9.
Kightlinger, W. et al. Nat. Chem. Biol. 14, 627–635 (2018).
- 10.
Lu, Q., Li, S. & Shao, F. Trends Microbiol. 23, 630–641 (2015).
- 11.
Jank, T., Belyi, Y. & Aktories, K. Cell Microbiol. 17, 1752–1765 (2015).
- 12.
Sun, Y., Willis, L. M., Batchelder, H. R. & Nitz, M. Chem. Commun. (Camb.) 52, 13024–13026 (2016).
- 13.
Just, I. et al. Nature 375, 500–503 (1995).
- 14.
Belyi, Y. et al. Proc. Natl. Acad. Sci. USA 103, 16953–16958 (2006).
- 15.
López Aguilar, A. et al. ACS. Chem. Biol. 12, 611–621 (2017).
- 16.
Jank, T. et al. Cell Microbiol. 14, 852–868 (2012).
- 17.
O’Shea, J. P. et al. Nat. Methods 10, 1211–1212 (2013).
- 18.
Rana, N. A. & Haltiwanger, R. S. Curr. Opin. Struct. Biol. 21, 583–589 (2011).
- 19.
Yu, H. et al. Nat. Chem. Biol. 12, 735–740 (2016).
- 20.
Steinemann, M., Schlosser, A., Jank, T. & Aktories, K. Proc. Natl. Acad. Sci. USA 115, 9580–9585 (2018).
- 21.
Levanova, N. et al. Naunyn Schmiedebergs Arch. Pharmacol. 322, 390 (2018).
- 22.
Wang, Z. et al. Cell Disc. 4, 53 (2018).
- 23.
Shen, D. L. et al. ACS Chem. Biol. 12, 206–213 (2017).
- 24.
Darabedian, N., Gao, J., Chuh, K. N., Woo, C. M. & Pratt, M. R. J. Am. Chem. Soc. 140, 7092–7100 (2018).
- 25.
Li, S. et al. Nature 501, 242–246 (2013).
- 26.
Berger, K. H. & Isberg, R. R. Mol. Microbiol. 7, 7–19 (1993).
- 27.
Besanceney-Webler, C. et al. Angew. Chem. Int. Ed. Engl. 50, 8051–8056 (2011).
- 28.
Qin, K. et al. ACS Chem. Biol. 13, 1983–1989 (2018).
- 29.
Xu, L. et al. PLoS Pathog. 6, e1000822 (2010).
- 30.
Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. Genome Res. 14, 1188–1190 (2004).
- 31.
Eswar, N. et al. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.6 (2006).
- 32.
Larkin, M. A. et al. Bioinformatics 23, 2947–2948 (2007).
- 33.
Maier, J. A. et al. J. Chem. Theory. Comput. 11, 3696–3713 (2015).
- 34.
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. J. Comput. Chem. 25, 1157–1174 (2004).
- 35.
Petersen, H. G. J. Chem. Phys. 103, 3668–3679 (1995).
Acknowledgements
We thank Z. Luo for providing L. pneumophila strains, W. Zhou at the mass spectrometry facility of the National Center for Protein Sciences at Peking University for assistance with proteomics analysis, and the High Performace Computing Platform of the Center for Life Sciences for supporting protein structure modeling. This work is supported by the National Key R&D Program of China (numbers 2018YFA0507600 and 2016YFA0501500 to X.C. and 2016YFA0502300 to L.L.) and the National Natural Science Foundation of China (numbers 21425204, 21672013, 91753206, and 21521003 to X.C.).
Author information
Affiliations
Contributions
L.G. and X.C. conceived the project; L.G. performed experiments with the help of Q.S., Y.Z., T.W., N.D., J.X., and F.S.; H.L. and L.L. performed the structural modeling; L.G. and X.C. analyzed the data and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–16, Supplementary Note 1
Rights and permissions
About this article
Cite this article
Gao, L., Song, Q., Liang, H. et al. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat Chem Biol 15, 213–216 (2019). https://doi.org/10.1038/s41589-018-0189-y
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Synthetic Glycobiology: Parts, Systems, and Applications
ACS Synthetic Biology (2020)
-
Glucosylation by the Legionella Effector SetA Promotes the Nuclear Localization of the Transcription Factor TFEB
iScience (2020)
-
Interfering with Autophagy: The Opposing Strategies Deployed by Legionella pneumophila and Coxiella burnetii Effector Proteins
Frontiers in Cellular and Infection Microbiology (2020)