Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins

Abstract

The identification of host protein substrates is key to understanding effector glycosyltransferases secreted by pathogenic bacteria and to using them for glycoprotein engineering. Here we report a chemical method for tagging, enrichment, and site-specific proteomic profiling of effector-modified proteins in host cells. Using this method, we discover that Legionella effector SetA α-O-glucosylates various eukaryotic proteins by recognizing a S/T-X-L-P/G sequence motif, which can be exploited to site-specifically introduce O-glucose on recombinant proteins.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemoenzymatic labeling of effector glycosyltransferase-modified proteins in host cells.
Fig. 2: SetA recognizes a S/T-X-L-P/G sequence motif.
Fig. 3: Site-specific O-glucosylation of Notch-EGF12.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Schmaltz, R. M., Hanson, S. R. & Wong, C.-H. Chem. Rev. 111, 4259–4307 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Moremen, K. W. et al. Nat. Chem. Biol. 14, 156–162 (2017).

    Article  Google Scholar 

  3. 3.

    Nothaft, H. & Szymanski, C. M. Nat. Rev. Microbiol. 8, 765–778 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Keys, T. G. & Aebi, M. Curr. Opin. Syst. Biol. 5, 23–31 (2017).

    Article  Google Scholar 

  5. 5.

    Schwarz, F. et al. Nat. Chem. Biol. 6, 264–266 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Valderrama-Rincon, J. D. et al. Nat. Chem. Biol. 8, 434–436 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Naegeli, A. et al. J. Biol. Chem. 289, 24521–24532 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Xu, Y. et al. Chem. Commun. (Camb.) 53, 9075–9077 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Kightlinger, W. et al. Nat. Chem. Biol. 14, 627–635 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Lu, Q., Li, S. & Shao, F. Trends Microbiol. 23, 630–641 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Jank, T., Belyi, Y. & Aktories, K. Cell Microbiol. 17, 1752–1765 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Sun, Y., Willis, L. M., Batchelder, H. R. & Nitz, M. Chem. Commun. (Camb.) 52, 13024–13026 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Just, I. et al. Nature 375, 500–503 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    Belyi, Y. et al. Proc. Natl. Acad. Sci. USA 103, 16953–16958 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    López Aguilar, A. et al. ACS. Chem. Biol. 12, 611–621 (2017).

    Article  Google Scholar 

  16. 16.

    Jank, T. et al. Cell Microbiol. 14, 852–868 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    O’Shea, J. P. et al. Nat. Methods 10, 1211–1212 (2013).

    Article  Google Scholar 

  18. 18.

    Rana, N. A. & Haltiwanger, R. S. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Yu, H. et al. Nat. Chem. Biol. 12, 735–740 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Steinemann, M., Schlosser, A., Jank, T. & Aktories, K. Proc. Natl. Acad. Sci. USA 115, 9580–9585 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Levanova, N. et al. Naunyn Schmiedebergs Arch. Pharmacol. 322, 390 (2018).

    Google Scholar 

  22. 22.

    Wang, Z. et al. Cell Disc. 4, 53 (2018).

    Article  Google Scholar 

  23. 23.

    Shen, D. L. et al. ACS Chem. Biol. 12, 206–213 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Darabedian, N., Gao, J., Chuh, K. N., Woo, C. M. & Pratt, M. R. J. Am. Chem. Soc. 140, 7092–7100 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Li, S. et al. Nature 501, 242–246 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Berger, K. H. & Isberg, R. R. Mol. Microbiol. 7, 7–19 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    Besanceney-Webler, C. et al. Angew. Chem. Int. Ed. Engl. 50, 8051–8056 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Qin, K. et al. ACS Chem. Biol. 13, 1983–1989 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Xu, L. et al. PLoS Pathog. 6, e1000822 (2010).

    Article  Google Scholar 

  30. 30.

    Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. Genome Res. 14, 1188–1190 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Eswar, N. et al. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.6 (2006).

    PubMed  Google Scholar 

  32. 32.

    Larkin, M. A. et al. Bioinformatics 23, 2947–2948 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Maier, J. A. et al. J. Chem. Theory. Comput. 11, 3696–3713 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Petersen, H. G. J. Chem. Phys. 103, 3668–3679 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Luo for providing L. pneumophila strains, W. Zhou at the mass spectrometry facility of the National Center for Protein Sciences at Peking University for assistance with proteomics analysis, and the High Performace Computing Platform of the Center for Life Sciences for supporting protein structure modeling. This work is supported by the National Key R&D Program of China (numbers 2018YFA0507600 and 2016YFA0501500 to X.C. and 2016YFA0502300 to L.L.) and the National Natural Science Foundation of China (numbers 21425204, 21672013, 91753206, and 21521003 to X.C.).

Author information

Affiliations

Authors

Contributions

L.G. and X.C. conceived the project; L.G. performed experiments with the help of Q.S., Y.Z., T.W., N.D., J.X., and F.S.; H.L. and L.L. performed the structural modeling; L.G. and X.C. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Xing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Note 1

Reporting Summary

Supplementary Dataset 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Song, Q., Liang, H. et al. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat Chem Biol 15, 213–216 (2019). https://doi.org/10.1038/s41589-018-0189-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing