Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins

Abstract

The identification of host protein substrates is key to understanding effector glycosyltransferases secreted by pathogenic bacteria and to using them for glycoprotein engineering. Here we report a chemical method for tagging, enrichment, and site-specific proteomic profiling of effector-modified proteins in host cells. Using this method, we discover that Legionella effector SetA α-O-glucosylates various eukaryotic proteins by recognizing a S/T-X-L-P/G sequence motif, which can be exploited to site-specifically introduce O-glucose on recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemoenzymatic labeling of effector glycosyltransferase-modified proteins in host cells.
Fig. 2: SetA recognizes a S/T-X-L-P/G sequence motif.
Fig. 3: Site-specific O-glucosylation of Notch-EGF12.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Schmaltz, R. M., Hanson, S. R. & Wong, C.-H. Chem. Rev. 111, 4259–4307 (2011).

    Article  CAS  Google Scholar 

  2. Moremen, K. W. et al. Nat. Chem. Biol. 14, 156–162 (2017).

    Article  Google Scholar 

  3. Nothaft, H. & Szymanski, C. M. Nat. Rev. Microbiol. 8, 765–778 (2010).

    Article  CAS  Google Scholar 

  4. Keys, T. G. & Aebi, M. Curr. Opin. Syst. Biol. 5, 23–31 (2017).

    Article  Google Scholar 

  5. Schwarz, F. et al. Nat. Chem. Biol. 6, 264–266 (2010).

    Article  CAS  Google Scholar 

  6. Valderrama-Rincon, J. D. et al. Nat. Chem. Biol. 8, 434–436 (2012).

    Article  CAS  Google Scholar 

  7. Naegeli, A. et al. J. Biol. Chem. 289, 24521–24532 (2014).

    Article  CAS  Google Scholar 

  8. Xu, Y. et al. Chem. Commun. (Camb.) 53, 9075–9077 (2017).

    Article  CAS  Google Scholar 

  9. Kightlinger, W. et al. Nat. Chem. Biol. 14, 627–635 (2018).

    Article  CAS  Google Scholar 

  10. Lu, Q., Li, S. & Shao, F. Trends Microbiol. 23, 630–641 (2015).

    Article  CAS  Google Scholar 

  11. Jank, T., Belyi, Y. & Aktories, K. Cell Microbiol. 17, 1752–1765 (2015).

    Article  CAS  Google Scholar 

  12. Sun, Y., Willis, L. M., Batchelder, H. R. & Nitz, M. Chem. Commun. (Camb.) 52, 13024–13026 (2016).

    Article  CAS  Google Scholar 

  13. Just, I. et al. Nature 375, 500–503 (1995).

    Article  CAS  Google Scholar 

  14. Belyi, Y. et al. Proc. Natl. Acad. Sci. USA 103, 16953–16958 (2006).

    Article  CAS  Google Scholar 

  15. López Aguilar, A. et al. ACS. Chem. Biol. 12, 611–621 (2017).

    Article  Google Scholar 

  16. Jank, T. et al. Cell Microbiol. 14, 852–868 (2012).

    Article  CAS  Google Scholar 

  17. O’Shea, J. P. et al. Nat. Methods 10, 1211–1212 (2013).

    Article  Google Scholar 

  18. Rana, N. A. & Haltiwanger, R. S. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    Article  CAS  Google Scholar 

  19. Yu, H. et al. Nat. Chem. Biol. 12, 735–740 (2016).

    Article  CAS  Google Scholar 

  20. Steinemann, M., Schlosser, A., Jank, T. & Aktories, K. Proc. Natl. Acad. Sci. USA 115, 9580–9585 (2018).

    Article  CAS  Google Scholar 

  21. Levanova, N. et al. Naunyn Schmiedebergs Arch. Pharmacol. 322, 390 (2018).

    Google Scholar 

  22. Wang, Z. et al. Cell Disc. 4, 53 (2018).

    Article  Google Scholar 

  23. Shen, D. L. et al. ACS Chem. Biol. 12, 206–213 (2017).

    Article  CAS  Google Scholar 

  24. Darabedian, N., Gao, J., Chuh, K. N., Woo, C. M. & Pratt, M. R. J. Am. Chem. Soc. 140, 7092–7100 (2018).

    Article  CAS  Google Scholar 

  25. Li, S. et al. Nature 501, 242–246 (2013).

    Article  CAS  Google Scholar 

  26. Berger, K. H. & Isberg, R. R. Mol. Microbiol. 7, 7–19 (1993).

    Article  CAS  Google Scholar 

  27. Besanceney-Webler, C. et al. Angew. Chem. Int. Ed. Engl. 50, 8051–8056 (2011).

    Article  CAS  Google Scholar 

  28. Qin, K. et al. ACS Chem. Biol. 13, 1983–1989 (2018).

    Article  CAS  Google Scholar 

  29. Xu, L. et al. PLoS Pathog. 6, e1000822 (2010).

    Article  Google Scholar 

  30. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  31. Eswar, N. et al. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.6 (2006).

    PubMed  Google Scholar 

  32. Larkin, M. A. et al. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  33. Maier, J. A. et al. J. Chem. Theory. Comput. 11, 3696–3713 (2015).

    Article  CAS  Google Scholar 

  34. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  Google Scholar 

  35. Petersen, H. G. J. Chem. Phys. 103, 3668–3679 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Luo for providing L. pneumophila strains, W. Zhou at the mass spectrometry facility of the National Center for Protein Sciences at Peking University for assistance with proteomics analysis, and the High Performace Computing Platform of the Center for Life Sciences for supporting protein structure modeling. This work is supported by the National Key R&D Program of China (numbers 2018YFA0507600 and 2016YFA0501500 to X.C. and 2016YFA0502300 to L.L.) and the National Natural Science Foundation of China (numbers 21425204, 21672013, 91753206, and 21521003 to X.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.G. and X.C. conceived the project; L.G. performed experiments with the help of Q.S., Y.Z., T.W., N.D., J.X., and F.S.; H.L. and L.L. performed the structural modeling; L.G. and X.C. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Xing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Note 1

Reporting Summary

Supplementary Dataset 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Song, Q., Liang, H. et al. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat Chem Biol 15, 213–216 (2019). https://doi.org/10.1038/s41589-018-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0189-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research