Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activation of silent biosynthetic gene clusters using transcription factor decoys


Here we report a transcription factor decoy strategy for targeted activation of eight large silent polyketide synthase and non-ribosomal peptide synthetase gene clusters, ranging from 50 to 134 kilobases (kb) in multiple streptomycetes, and characterization of a novel oxazole family compound produced by a 98-kb biosynthetic gene cluster. Owing to its simplicity and ease of use, this strategy can be scaled up readily for discovery of natural products in streptomycetes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of the TFD strategy.
Fig. 2: Activation of BGCs in two streptomycetes.

Data availability

The DNA sequence encoding the oxazolepoxidomycin biosynthetic gene cluster from Streptomyces sp. NRRL F-4335 has been deposited to GenBank with accession code BK010686. All other data pertaining to this study are contained in the published article and its Supplementary Information files or are available from the corresponding author upon reasonable request.


  1. Martens, E. & Demain, A. L. J. Antibiot. 70, 520–526 (2017).

    Article  CAS  Google Scholar 

  2. Ikeda, H. et al. Nat. Biotechnol. 21, 526–531 (2003).

    Article  Google Scholar 

  3. Bentley, S. D. et al. Nature 417, 141–147 (2002).

    Article  Google Scholar 

  4. Ren, H., Wang, B. & Zhao, H. Curr. Opin. Biotechnol. 48, 21–27 (2017).

    Article  CAS  Google Scholar 

  5. Nah, H.-J., Pyeon, H.-R., Kang, S.-H., Choi, S.-S. & Kim, E.-S. Front. Microbiol. 8, 394 (2017).

    Article  Google Scholar 

  6. Rutledge, P. J. & Challis, G. L. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  Google Scholar 

  7. Hecker, M. & Wagner, A. H. Biochem. Pharmacol. 144, 29–34 (2017).

    Article  CAS  Google Scholar 

  8. Gambari, R. Expert Opin. Ther. Pat. 21, 1755–1771 (2011).

    Article  CAS  Google Scholar 

  9. Liu, G., Chater, K. F., Chandra, G., Niu, G. & Tan, H. Microbiol. Mol. Biol. Rev. 77, 112–143 (2013).

    Article  CAS  Google Scholar 

  10. Kotake, C. et al. J. Antibiot. (Tokyo) 45, 1442–1450 (1992).

    Article  CAS  Google Scholar 

  11. Chan, Y. A. et al. Proc. Natl. Acad. Sci. USA 103, 14349–14354 (2006).

  12. Harunari, E., Komaki, H. & Igarashi, Y. Beilstein. J. Org. Chem. 13, 441–450 (2017).

    Article  CAS  Google Scholar 

  13. Robertson, A. W. et al. J. Am. Chem. Soc. 138, 2200–2208 (2016).

    Article  CAS  Google Scholar 

  14. Xu, G. et al. J. Biol. Chem. 285, 27440–27448 (2010).

    Article  CAS  Google Scholar 

  15. Mori, T. et al. Tetrahedr. Lett. 26, 1073–1076 (1985).

    Article  CAS  Google Scholar 

  16. Zhao, C. et al. J. Biol. Chem. 285, 20097–20108 (2010).

    Article  CAS  Google Scholar 

  17. Helfrich, E. J. N. & Piel, J. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  Google Scholar 

  18. Wagner, D. T. et al. Structure 25, 1045–1055.e2 (2017).

    Article  CAS  Google Scholar 

  19. Gay, D. C., Spear, P. J. & Keatinge-Clay, A. T. ACS Chem. Biol. 9, 2374–2381 (2014).

    Article  CAS  Google Scholar 

  20. Shichijo, Y. et al. J. Am. Chem. Soc. 130, 12230–12231 (2008).

    Article  CAS  Google Scholar 

  21. Gallimore, A. R. et al. Chem. Biol. 13, 453–460 (2006).

    Article  CAS  Google Scholar 

  22. Zhang, M. M. et al. Nat. Chem. Biol. 13, 607–609 (2017).

    Article  CAS  Google Scholar 

  23. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, Norwich, 2000).

  24. Gibson, D. G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

Download references


This work was supported by grant GM077596 (to H.Z.) from the US National Institutes of Health (NIH). Some of the data were collected in the Carl R. Woese Institute for Genomic Biology Core on a 600 MHz NMR funded by NIH grant number S10-RR028833, LC-MS at the MCB Metabolomics Center, and HRMS at the SCS Mass Spectrometry Laboratory. B.W. and F.G. dedicate this article to the memory of Keqian Yang, who made important contributions to their understanding of Streptomyces genetic regulation of secondary metabolism.

Author information

Authors and Affiliations



B.W. and H.Z. conceived and designed the study, and wrote the manuscript. B.W. and F.G. performed the experiments and analysed the data, and purified compounds. B.W. and S.-H.D. analyzed the NMR data.

Corresponding author

Correspondence to Huimin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–10, Supplementary Notes 1 and 2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Guo, F., Dong, SH. et al. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat Chem Biol 15, 111–114 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing