Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Riboregulated toehold-gated gRNA for programmable CRISPR–Cas9 function

Abstract

Predictable control over gene expression is essential to elicit desired synthetic cellular phenotypes. Although CRISPR–Cas9 offers a simple RNA-guided method for targeted transcriptional control, it lacks the ability to integrate endogenous cellular information for efficient signal processing. Here, we present a new class of riboregulators termed toehold-gated gRNA (thgRNA) by integrating toehold riboswitches into sgRNA scaffolds, and demonstrate their programmability for multiplexed regulation in Escherichia coli with minimal cross-talks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and screening of toehold-gated guide RNAs (thgRNAs).
Fig. 2: thgRNAs can be selectively activated intracellularly by induced expression of cognate trigger RNAs.
Fig. 3: thgRNA can be activated specifically by endogenous RNAs.

Similar content being viewed by others

Data availability

Sequences of all thgRNAs and trigger strands studied are included in the Supplementary Information. Additional data that support the findings of this study are available from the authors on reasonable request.

References

  1. Khalil, A. S. & Collins, J. J. Nat. Rev. Genet. 11, 367–379 (2010).

    Article  CAS  Google Scholar 

  2. Lim, W. A. Nat. Rev. Mol. Cell Biol. 11, 393–403 (2010).

    Article  CAS  Google Scholar 

  3. Taylor, N. D. et al. Nat. Methods 13, 177–183 (2016).

    Article  CAS  Google Scholar 

  4. Tang, S. Y. & Cirino, P. C. Angew. Chem. Int. Ed. Engl. 50, 1084–1086 (2011).

    Article  CAS  Google Scholar 

  5. Serganov, A. & Nudler, E. Cell 152, 17–24 (2013).

    Article  CAS  Google Scholar 

  6. Chappell, J., Watters, K. E., Takahashi, M. K. & Lucks, J. B. Curr. Opin. Chem. Biol. 28, 47–56 (2015).

    Article  CAS  Google Scholar 

  7. Callura, J. M., Cantor, C. R. & Collins, J. J. Proc. Natl. Acad. Sci. USA 109, 5850–5855 (2012).

    Article  CAS  Google Scholar 

  8. Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B. & Arkin, A. P. Nat. Chem. Biol. 8, 447–454 (2012).

    Article  CAS  Google Scholar 

  9. Horvath, P. & Barrangou, R. Science 327, 167–170 (2010).

    Article  CAS  Google Scholar 

  10. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. Nature 482, 331–338 (2012).

    Article  CAS  Google Scholar 

  11. Qi, L. S. et al. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  12. Tang, W., Hu, J. H. & Liu, D. R. Nat. Commun. 8, 15939 (2017).

    Article  CAS  Google Scholar 

  13. Liu, Y. et al. Nat. Methods 13, 938–944 (2016).

    Article  CAS  Google Scholar 

  14. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Nat. Chem. Biol. 11, 316–318 (2015).

    Article  CAS  Google Scholar 

  15. Zhang, D. Y. & Winfree, E. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  Google Scholar 

  16. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Cell 159, 925–939 (2014).

    Article  CAS  Google Scholar 

  17. Zadeh, J. N. et al. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  Google Scholar 

  18. Mekler, V., Minakhin, L., Semenova, E., Kuznedelov, K. & Severinov, K. Nucleic Acids Res. 44, 2837–2845 (2016).

    Article  Google Scholar 

  19. Xu, P., Vansiri, A., Bhan, N. & Koffas, M. A. G. ACS Synth. Biol. 1, 256–266 (2012).

    Article  CAS  Google Scholar 

  20. Lutz, R. & Bujard, H. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  21. Green, A. A. et al. Nature 548, 117–121 (2017).

    Article  CAS  Google Scholar 

  22. Groves, B. et al. Nat. Nanotechnol. 11, 287–294 (2016).

    Article  CAS  Google Scholar 

  23. Altuvia, S., Zhang, A., Argaman, L., Tiwari, A. & Storz, G. EMBO J. 17, 6069–6075 (1998).

    Article  CAS  Google Scholar 

  24. Massé, E., Escorcia, F. E. & Gottesman, S. Genes Dev. 17, 2374–2383 (2003).

    Article  Google Scholar 

  25. Ran, F. A. et al. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  Google Scholar 

  26. Gagnon, J. A. et al. PLoS One 9, e98186 (2014).

    Article  Google Scholar 

  27. Summer, H., Grämer, R. & Dröge, P. J. Vis. Exp. 32, e1485 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants to W.C. from the National Science Foundation (MCB1615731 and MCB1817675). We thank D. Liu (Harvard University), T. Pederson (University of Massachusetts Medical School), and M. Koffas (Rensselaer Polytechnic Institute) for their generous gifts of plasmids as noted in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K-H.S. and W.C. conceived the project. K-H.S. designed experiments, performed the experiments, analyzed the data, and wrote the manuscript. W.C. designed experiments, analyzed the data, and wrote the manuscript. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wilfred Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siu, KH., Chen, W. Riboregulated toehold-gated gRNA for programmable CRISPR–Cas9 function. Nat Chem Biol 15, 217–220 (2019). https://doi.org/10.1038/s41589-018-0186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0186-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing