Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Disrupting the CD95–PLCγ1 interaction prevents Th17-driven inflammation

Abstract

CD95L is a transmembrane ligand (m-CD95L) that is cleaved by metalloproteases to release a soluble ligand (s-CD95L). Unlike m-CD95L, interaction between s-CD95L and CD95 fails to recruit caspase-8 and FADD to trigger apoptosis and instead induces a Ca2+ response via docking of PLCγ1 to the calcium-inducing domain (CID) within CD95. This signaling pathway induces accumulation of inflammatory Th17 cells in damaged organs of lupus patients, thereby aggravating disease pathology. A large-scale screen revealed that the HIV protease inhibitor ritonavir is a potent disruptor of the CD95–PLCγ1 interaction. A structure–activity relationship approach highlighted that ritonavir is a peptidomimetic that shares structural characteristics with CID with respect to docking to PLCγ1. Thus, we synthesized CID peptidomimetics abrogating both the CD95-driven Ca2+ response and transmigration of Th17 cells. Injection of ritonavir and the CID peptidomimetic into lupus mice alleviated clinical symptoms, opening a new avenue for the generation of drugs for lupus patients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Screening of the Prestwick library to identify chemical leads that inhibit the CD95–PLCγ1 interaction.
Fig. 2: Peptidomimetics inhibit CD95-mediated PLCγ1 recruitment, calcium signaling, and endothelial transmigration of Th17 T cells.
Fig. 3: NMR characterization of SLP-76, CID and DB550 binding surfaces to the SH3 domain of PLCγ1.
Fig. 4: Competitive effect of DB550 and ritonavir toward the SLP-76–PLCγ1 interaction.
Fig. 5: Ritonavir and DB550 alleviate clinical symptoms in lupus-prone mice.
Fig. 6: HIV protease inhibitors are responsible for inhibiting the CD95-mediated Ca2+ signaling pathway in cells isolated from HIV patients.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information or are available from the corresponding author on reasonable request. Additional modeling methods are described Methods.

References

  1. 1.

    Straub, R. H. & Schradin, C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health 2016, 37–51 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    Mohan, C. & Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 11, 329–341 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Chiche, L. et al. New treatment options for lupus - a focus on belimumab. Ther. Clin. Risk Manag. 8, 33–43 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Tauzin, S. et al. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol. 9, e1001090 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    O’ Reilly, L. A. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    Article  Google Scholar 

  9. 9.

    O’Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  Google Scholar 

  10. 10.

    Holler, N. et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell. Biol. 23, 1428–1440 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    CAS  Article  Google Scholar 

  12. 12.

    Kleber, S. et al. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13, 235–248 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Malleter, M. et al. CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res. 73, 6711–6721 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Poissonnier, A. et al. CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice. Immunity 45, 209–223 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Bechara, C. & Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 587, 1693–1702 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Gokhale, A. S. & Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 6, 755–774 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Hu, Y., Li, X., Sebti, S. M., Chen, J. & Cai, J. Design and synthesis of AApeptides: a new class of peptide mimics. Bioorg. Med. Chem. Lett. 21, 1469–1471 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Deng, L., Velikovsky, C. A., Swaminathan, C. P., Cho, S. & Mariuzza, R. A. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1. J. Mol. Biol. 352, 1–10 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    Berry, D. M., Nash, P., Liu, S. K., Pawson, T. & McGlade, C. J. A high-affinity Arg-X-X-Lys SH3 binding motif confers specificity for the interaction between Gads and SLP-76 in T cell signaling. Curr. Biol. 12, 1336–1341 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    Sanzenbacher, R., Kabelitz, D. & Janssen, O. SLP-76 binding to p56lck: a role for SLP-76 in CD4-induced desensitization of the TCR/CD3 signaling complex. J. Immunol. 163, 3143–3152 (1999).

    CAS  PubMed  Google Scholar 

  22. 22.

    Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT. Mol. Cell. Biol. 21, 4208–4218 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    Harkiolaki, M. et al. Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. EMBO J. 22, 2571–2582 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Yablonski, D., Kuhne, M. R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-gamma1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    Bénéteau, M. et al. Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Mol. Cancer Res. 6, 604–613 (2008).

    Article  Google Scholar 

  28. 28.

    Straus, S. E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98, 194–200 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc. Natl. Acad. Sci. USA 90, 1756–1760 (1993).

    CAS  Article  Google Scholar 

  30. 30.

    Theofilopoulos, A. N. & Dixon, F. J. Murine models of systemic lupus erythematosus. Adv. Immunol. 37, 269–390 (1985).

    CAS  Article  Google Scholar 

  31. 31.

    Henderson, L. E. et al. Molecular characterization of gag proteins from simian immunodeficiency virus (SIVMne). J. Virol. 62, 2587–2595 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rich, D. H., Green, J., Toth, M. V., Marshall, G. R. & Kent, S. B. Hydroxyethylamine analogues of the p17/p24 substrate cleavage site are tight-binding inhibitors of HIV protease. J. Med. Chem. 33, 1285–1288 (1990).

    CAS  Article  Google Scholar 

  33. 33.

    Erickson, J. et al. Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science 249, 527–533 (1990).

    CAS  Article  Google Scholar 

  34. 34.

    Flexner, C. HIV-protease inhibitors. N. Engl. J. Med. 338, 1281–1292 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    Rubino, S. J., Geddes, K. & Girardin, S. E. Innate IL-17 and IL-22 responses to enteric bacterial pathogens. Trends Immunol. 33, 112–118 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Alfonso, Y. & Monzote, L. HIV protease inhibitors: effect on the opportunistic protozoan parasites. Open Med. Chem. J. 5, 40–50 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Mody, G. M., Patel, N., Budhoo, A. & Dubula, T. Concomitant systemic lupus erythematosus and HIV: case series and literature review. Semin. Arthritis Rheum. 44, 186–194 (2014).

    Article  Google Scholar 

  38. 38.

    Langley, R. G. et al. Secukinumab in plaque psoriasis–results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  Google Scholar 

  39. 39.

    Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Berthelot, P., Guglielminotti, C., Frésard, A., Lucht, F. & Perrot, J. L. Dramatic cutaneous psoriasis improvement in a patient with the human immunodeficiency virus treated with 2′,3′-dideoxy,3′-thyacytidine [correction of 2′,3′-dideoxycytidine] and ritonavir. Arch. Dermatol 133, 531 (1997).

    CAS  Article  Google Scholar 

  42. 42.

    Chiricozzi, A. et al. Complete resolution of erythrodermic psoriasis in an HIV and HCV patient unresponsive to antipsoriatic treatments after highly active antiretroviral therapy (ritonavir, atazanavir, emtricitabine, tenofovir). Dermatology 225, 333–337 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Fischer, T., Schwörer, H., Vente, C., Reich, K. & Ramadori, G. Clinical improvement of HIV-associated psoriasis parallels a reduction of HIV viral load induced by effective antiretroviral therapy. AIDS 13, 628–629 (1999).

    CAS  Article  Google Scholar 

  44. 44.

    Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image processing with Image. J. Biophoton. Int. 11, 36–42 (2004).

    Google Scholar 

  45. 45.

    Marinozzi, V. New technics for staining tissues embedded in plastic material for study with the high resolution light microscope. Z. Wiss. Mikrosk. 65, 219–230 (1963).

    CAS  PubMed  Google Scholar 

  46. 46.

    Jiang, C. et al. Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol. 178, 7422–7431 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Legembre, P., Moreau, P., Daburon, S., Moreau, J. F. & Taupin, J. L. Potentiation of Fas-mediated apoptosis by an engineered glycosylphosphatidylinositol-linked Fas. Cell Death Differ. 9, 329–339 (2002).

    CAS  Article  Google Scholar 

  48. 48.

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  Article  Google Scholar 

  49. 49.

    Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article  Google Scholar 

  50. 50.

    Padhee, S. et al. Non-hemolytic α-AApeptides as antimicrobial peptidomimetics. Chem. Commun. (Camb.) 47, 9729–9731 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the H2P2 facility at Biosit (Rennes) for its technical assistance and to M. Katan (Chester Beatty Laboratories, The Institute of Cancer Research, London, UK) and S.W. Michnick (University of Montréal, Canada) for providing vectors. This work was supported by INCa PLBIO (P.L., P.V., P.v.d.W. and M.J.), Ligue Contre le Cancer (PL), Fondation ARC (P.L.), ANR PRCE (P.L. and P.B.), Fondation Arthritis (P.B.) and Canadian Institutes of Health Research Grant FRN-156276 (K.G.).

Author information

Affiliations

Authors

Contributions

A.P., J.-P.G., H.T.N., D.B., N.L., M.J., P.V., G.K., M.J., F.J., R.P., T.D., I.D., S.M., M.T., E.L. and L.M. conducted the experiments. N.L. developed the computer analyses. A.P., D.B., J.-P.G., N.L., P.B., G.K., K.G., P.V., M.J., P.v.d.W. and P.L. designed the experiments, analyzed data and wrote the paper. P.L. supervised the project.

Corresponding author

Correspondence to Patrick Legembre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–6

Reporting Summary

Supplementary Note 1

Synthetic procedures

Supplementary Dataset 1

NMR spectra raw data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poissonnier, A., Guégan, JP., Nguyen, H.T. et al. Disrupting the CD95–PLCγ1 interaction prevents Th17-driven inflammation. Nat Chem Biol 14, 1079–1089 (2018). https://doi.org/10.1038/s41589-018-0162-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing