Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity

Abstract

Expression of programmed cell death 1 (PD-1) ligand 1 (PD-L1) protects tumor cells from T cell–mediated immune surveillance, and immune checkpoint blockade (ICB) therapies targeting PD-1 and PD-L1 have exhibited significant clinical benefits. However, the relatively low response rate and observed ICB resistance highlight the need to understand the molecular regulation of PD-L1. Here we show that HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity. HIP1R physically interacts with PD-L1 and delivers PD-L1 to the lysosome through a lysosomal targeting signal. Depletion of HIP1R in tumor cells caused PD-L1 accumulation and suppressed T cell–mediated cytotoxicity. A rationally designed peptide (PD-LYSO) incorporating the lysosome-sorting signal and the PD-L1-binding sequence of HIP1R successfully depleted PD-L1 expression in tumor cells. Our results identify the molecular machineries governing the lysosomal degradation of PD-L1 and exemplify the development of a chimeric peptide for targeted degradation of PD-L1 as a crucial anticancer target.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Identification of HIP1R as a regulator of PD-L1.
Fig. 2: Effects of HIP1R on PD-L1 degradation and subcellular distribution.
Fig. 3: Effects of HIP1R on tumor cell PD-1 binding and T cell cytotoxicity.
Fig. 4: HIP1R physically interacts with PD-L1 through a conserved C-terminal domain.
Fig. 5: A sorting motif in HIP1R directs lysosomal degradation.
Fig. 6: A rationally designed PD-LYSO peptide targets PD-L1 to lysosomal degradation.

Data availability

Source data for statistical tests in Figs. 1, 2, 3 and 5 are provided. All data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Sonpavde, G. PD-1 and PD-L1 inhibitors as salvage therapy for urothelial carcinoma. N. Engl. J. Med. 376, 1073–1074 (2017).

    Article  PubMed  Google Scholar 

  2. 2.

    Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zerdes, I., Matikas, A., Bergh, J., Rassidakis, G. Z. & Foukakis, T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 37, 4639–4661 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Wang, Y. et al. Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front. Pharmacol. 9, 536 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yao, H., Wang, H., Li, C., Fang, J. Y. & Xu, J. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol. 9, 1774 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Santoni, M., Montironi, R. & Battelli, N. Immune checkpoint blockade in advanced renal-cell carcinoma. N. Engl. J. Med. 379, 91–92 (2018).

    Article  PubMed  Google Scholar 

  8. 8.

    Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  Google Scholar 

  9. 9.

    Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Snyder, A. et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS. Med. 14, e1002309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Haratake, N. et al. Positive conversion of PD-L1 expression after treatments with chemotherapy and nivolumab. Anticancer Res. 37, 5713–5717 (2017).

    PubMed  Google Scholar 

  12. 12.

    Chowdhury, S. et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget 7, 32318–32328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dorand, R. D. et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353, 399–403 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kataoka, K. et al. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhang, J. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Li, C. W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Yang, Y. et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 28, 862–864 (2018).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cha, J. H. et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606–620.e7 (2018).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Bauer, P. O. et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol. 28, 256–263 (2010).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Fan, X., Jin, W. Y., Lu, J., Wang, J. & Wang, Y. T. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17, 471–480 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Van Coillie, S. et al. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer. Oncotarget 7, 17608–17615 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Deng, R. et al. B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft-versus-host disease. J. Immunol. 194, 560–574 (2015).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Wang, X. F. et al. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication. J. Viral Hepat. 20, 27–39 (2013). Suppl 1.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gottfried, I., Ehrlich, M. & Ashery, U. The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis? Biochem. Soc. Trans. 38, 187–191 (2010).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Jain, R. N. et al. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J. Clin. Invest. 118, 2459–2470 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Li, C. W. et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 33, 187–201.e10 (2018).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Negi, S. et al. LocSigDB: a database of protein localization signals. Database (Oxford) 2015, bav003 (2015).

    Article  Google Scholar 

  39. 39.

    Greenberg, M., DeTulleo, L., Rapoport, I., Skowronski, J. & Kirchhausen, T. A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr. Biol. 8, 1239–1242 (1998).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kyttälä, A., Yliannala, K., Schu, P., Jalanko, A. & Luzio, J. P. AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif. J. Biol. Chem. 280, 10277–10283 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Nesbit, M. A. et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat. Genet. 45, 93–97 (2013).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kantheti, P. et al. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21, 111–122 (1998).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ohno, H. et al. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem. 273, 25915–25921 (1998).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Lundmark, R. & Carlsson, S. R. The beta-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem. J. 362, 597–607 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Holloway, Z. G. et al. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol. Biol. Cell 24, 1735–1748 S1–8 (2013).

  46. 46.

    Amorim, N. A. et al. Interaction of HIV-1 Nef protein with the host protein Alix promotes lysosomal targeting of CD4 receptor. J. Biol. Chem. 289, 27744–27756 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhai, Q., Landesman, M. B., Robinson, H., Sundquist, W. I. & Hill, C. P. Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1. J. Virol. 85, 632–637 (2011).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Dores, M. R. et al. AP-3 regulates PAR1 ubiquitin-independent MVB/lysosomal sorting via an ALIX-mediated pathway. Mol. Biol. Cell 23, 3612–3623 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dores, M. R., Grimsey, N. J., Mendez, F. & Trejo, J. ALIX regulates the ubiquitin-independent lysosomal sorting of the P2Y1 purinergic receptor via a YPX3L motif. PLoS One 11, e0157587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Yi, X. et al. Alix (AIP1) is a vasopressin receptor (V2R)-interacting protein that increases lysosomal degradation of the V2R. Am. J. Physiol. Renal Physiol. 292, F1303–F1313 (2007).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Liang, L. et al. A designed peptide targets two types of modifications of p53 with anti-cancer activity. Cell Chem. Biol. 25, 761–774.e765 (2018).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Zhang, Y. et al. Proteomic identification of ERP29 as a key chemoresistant factor activated by the aggregating p53 mutant Arg282Trp. Oncogene 36, 5473–5483 (2017).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Jiao, S. et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23, 3711–3720 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wang, J. et al. ArhGAP30 promotes p53 acetylation and function in colorectal cancer. Nat. Commun. 5, 4735 (2014).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Zheng in Shanghai Jiao Tong University and X. Su in Peking University for their inspiring discussions and critical reading of the manuscript. This project was supported by the following grants to J.X.: National Key Research & Development (R&D) Plan (2016YFC0906002); National Natural Science Foundation of China (81874050, 81572326, 81322036, 81320108024); Top-Notch Young Talents Program of China (ZTZ2015-48); Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20152514); “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (15SG16); Tang Scholar (SJTU-JX).

Author information

Affiliations

Authors

Contributions

H.W. performed co-immunoprecipitation, cycloheximide-chase, immunofluorescence, flow cytometry, cell proliferation assay, and T cell cytotoxicity assays; H.W., Z.L., H.Y., C.L., H.S., J.L., and J.X. collaboratively performed the other biochemical and cellular experiments including molecular cloning, GST pull-down, peptide binding assay, and PD-1 binding assay; H.W., H.Y., Y.Z., L.L. and J.-Y.F. analyzed flow cytometry data and colocalization between PD-L1 and different subcellular organelles; J.X. reprogramed the OncoBinder package and designed the PD-LYSO peptide. H.W. and J.X. wrote the paper. J.X. conceived and supervised the study.

Corresponding author

Correspondence to Jie Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yao, H., Li, C. et al. HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity. Nat Chem Biol 15, 42–50 (2019). https://doi.org/10.1038/s41589-018-0161-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing