Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo

Abstract

ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12–/– mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo–active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12–/– mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12–/– mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a high-throughput screening (HTS) assay for ABHD12 inhibitors.
Fig. 2: Discovery and optimization of (thio)urea inhibitors of ABHD12.
Fig. 3: DO264 inhibits ABHD12 and increases lyso-PS content in human monocytic cells.
Fig. 4: DO264 inhibits ABHD12 and increases brain lyso-PS content in vivo.
Fig. 5: Effects of ABHD12 inhibition on mouse auditory capacity and brain lyso-PS content in vivo.
Fig. 6: Heightened immunopathological responses to LCMV-clone 13 (Cl13) infection of mice with genetic or pharmacological inactivation of ABHD12.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files) or are available from the corresponding author on reasonable request.

References

  1. Rosen, H., Germana Sanna, M., Gonzalez-Cabrera, P. J. & Roberts, E. The organization of the sphingosine 1-phosphate signaling system. Curr. Top. Microbiol. Immunol. 378, 1–21 (2014).

    CAS  PubMed  Google Scholar 

  2. Yung, Y. C., Stoddard, N. C. & Chun, J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res. 55, 1192–1214 (2014).

    Article  CAS  Google Scholar 

  3. Makide, K. et al. Novel lysophosphoplipid receptors: their structure and function. J. Lipid Res. 55, 1986–1995 (2014).

    Article  CAS  Google Scholar 

  4. Kihara, Y., Mizuno, H. & Chun, J. Lysophospholipid receptors in drug discovery. Exp. Cell Res. 333, 171–177 (2015).

    Article  CAS  Google Scholar 

  5. van der Kleij, D. et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277, 48122–48129 (2002).

    Article  Google Scholar 

  6. Gonzalez-Cabrera, P. J., Brown, S., Studer, S. M. & Rosen, H. S1P signaling: new therapies and opportunities. F1000Prime Rep. 6, 109 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Inoue, A. & Aoki, J. TGFalpha shedding assay is useful for identifying ligands for orphan GPCRs. Seikagaku 85, 1029–1033 (2013).

    CAS  PubMed  Google Scholar 

  8. Kitamura, H. et al. GPR34 is a receptor for lysophosphatidylserine with a fatty acid at the sn-2 position. J. Biochem. 151, 511–518 (2012).

    Article  CAS  Google Scholar 

  9. Barnes, M. J. et al. The lysophosphatidylserine receptor GPR174 constrains regulatory T cell development and function. J. Exp. Med. 212, 1011–1020 (2015).

    Article  CAS  Google Scholar 

  10. Sugo, T. et al. Identification of a lysophosphatidylserine receptor on mast cells. Biochem. Biophys. Res. Commun. 341, 1078–1087 (2006).

    Article  CAS  Google Scholar 

  11. Shinjo, Y. et al. Lysophosphatidylserine suppresses IL-2 production in CD4 T cells through LPS3/GPR174. Biochem. Biophys. Res. Commun. 494, 332–338 (2017).

    Article  CAS  Google Scholar 

  12. Barnes, M. J. & Cyster, J. G. Lysophosphatidylserine suppression of T-cell activation via GPR174 requires Gαs proteins. Immunol. Cell Biol. 96, 439–445 (2018).

    Article  CAS  Google Scholar 

  13. Kamat, S. S. et al. Immunomodulatory lysophosphatidylserines are regulated by ABHD16A and ABHD12 interplay. Nat. Chem. Biol. 11, 164–171 (2015).

    Article  CAS  Google Scholar 

  14. Sato, T. et al. Serine phospholipid-specific phospholipase A that is secreted from activated platelets. A new member of the lipase family. J. Biol. Chem. 272, 2192–2198 (1997).

    Article  CAS  Google Scholar 

  15. Blankman, J. L., Long, J. Z., Trauger, S. A., Siuzdak, G. & Cravatt, B. F. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc. Natl Acad. Sci. USA 110, 1500–1505 (2013).

    Article  CAS  Google Scholar 

  16. Fiskerstrand, T. et al. Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am. J. Hum. Genet. 87, 410–417 (2010).

    Article  CAS  Google Scholar 

  17. Fiskerstrand, T. et al. A novel Refsum-like disorder that maps to chromosome 20. Neurology 72, 20–27 (2009).

    Article  CAS  Google Scholar 

  18. Parkkari, T. et al. Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12). PLoS One 9, e98286 (2014).

    Article  Google Scholar 

  19. Hoover, H. S., Blankman, J. L., Niessen, S. & Cravatt, B. F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18, 5838–5841 (2008).

    Article  CAS  Google Scholar 

  20. Bachovchin, D.A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus library screening. Proc. Natl Acad. Sci. U.S.A. 107, 20941–20946 (2010).

    Article  CAS  Google Scholar 

  21. Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011).

    Article  CAS  Google Scholar 

  22. Savinainen, J. R., Navia-Paldanius, D. & Laitinen, J. T. A sensitive and versatile fluorescent activity assay for ABHD12. Methods Mol. Biol. 1412, 179–189 (2016).

    Article  CAS  Google Scholar 

  23. van der Wel, T. et al. A natural substrate-based fluorescence assay for inhibitor screening on diacylglycerol lipase α. J. Lipid Res. 56, 927–935 (2015).

    Article  Google Scholar 

  24. Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  25. Cognetta, A. B. III et al. Selective N-hydroxyhydantoin carbamate inhibitors of mammalian serine hydrolases. Chem. Biol. 22, 928–937 (2015).

    Article  CAS  Google Scholar 

  26. Liu, Y. & Patricelli, M. P. & Cravatt, B. F. et al. Activity-based protein profiling: the serine hydrolases.Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  27. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    Article  Google Scholar 

  28. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  Google Scholar 

  29. Viader, A. et al. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. eLife 5, e12345 (2016).

    Article  Google Scholar 

  30. Gijón, M. A., Riekhof, W. R., Zarini, S., Murphy, R. C. & Voelker, D. R. Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J. Biol. Chem. 283, 30235–30245 (2008).

    Article  Google Scholar 

  31. Blankman, J. L., Simon, G. M. & Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  Google Scholar 

  32. Navia-Paldanius, D., Savinainen, J. R. & Laitinen, J. T. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 53, 2413–2424 (2012).

    Article  CAS  Google Scholar 

  33. Oldstone, M. B. Lessons learned and concepts formed from study of the pathogenesis of the two negative-strand viruses lymphocytic choriomeningitis and influenza. Proc. Natl Acad. Sci. USA 110, 4180–4183 (2013).

    Article  CAS  Google Scholar 

  34. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  Google Scholar 

  35. Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301–1309 (2006).

    Article  CAS  Google Scholar 

  36. Baccala, R. et al. Type I interferon is a therapeutic target for virus-induced lethal vascular damage. Proc. Natl Acad. Sci. USA 111, 8925–8930 (2014).

    Article  CAS  Google Scholar 

  37. Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    Article  CAS  Google Scholar 

  38. Rabbani, B., Mahdieh, N., Hosomichi, K., Nakaoka, H. & Inoue, I. Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. J. Hum. Genet. 57, 621–632 (2012).

    Article  CAS  Google Scholar 

  39. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    Article  CAS  Google Scholar 

  40. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  Google Scholar 

  41. Alhouayek, M., Masquelier, J. & Muccioli, G. G. Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends Pharmacol. Sci. 39, 586–604 (2018).

    Article  CAS  Google Scholar 

  42. Olson, J. K. & Miller, S. D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    Article  CAS  Google Scholar 

  43. Neher, J. J. et al. Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J. Immunol. 186, 4973–4983 (2011).

    Article  CAS  Google Scholar 

  44. Lehnardt, S. et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol. 177, 583–592 (2006).

    Article  CAS  Google Scholar 

  45. Hoffmann, O. et al. TLR2 mediates neuroinflammation and neuronal damage. J. Immunol. 178, 6476–6481 (2007).

    Article  CAS  Google Scholar 

  46. Vambutas, A. & Pathak, S. AAO: autoimmune and autoinflammatory (disease) in otology: what is new in immune-mediated hearing loss. Laryngoscope Investig. Otolaryngol. 1, 110–115 (2016).

    Article  Google Scholar 

  47. Wootla, B., Eriguchi, M. & Rodriguez, M. Is multiple sclerosis an autoimmune disease? Autoimmune Dis. 2012, 969657 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Suciu, R. M., Cognetta, A. B. III, Potter, Z. E. & Cravatt, B. F. Selective irreversible inhibitors of the Wnt-deacylating enzyme NOTUM developed by activity-based protein profiling. ACS Med. Chem. Lett. 9, 563–568 (2018).

    Article  CAS  Google Scholar 

  49. Bachovchin, D. A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl Acad. Sci. USA 107, 20941–20946 (2010).

    Article  CAS  Google Scholar 

  50. Alexander, J. P. & Cravatt, B. F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol. 12, 1179–1187 (2005).

    Article  CAS  Google Scholar 

  51. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2011).

    Article  Google Scholar 

  52. Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  Google Scholar 

  53. Ogasawara, D. et al. Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition. Proc. Natl Acad. Sci. USA 113, 26–33 (2016).

    Article  CAS  Google Scholar 

  54. Borrow, P., Evans, C. F. & Oldstone, M. B. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J. Virol. 69, 1059–1070 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (DA033760, NS092980, AI123210, AI117175) and the Skaggs Institute for Chemical Biology. J.B. is supported by a fellowship from Celgene. We thank J. Olucha for recombinant expression of mABHD12 in HEK293F cells; J. Chen (Automated Synthesis Facility at Scripps Research) for measuring enantiopurity of (S)-DO271; C.E. Moore and M. Gembicky (UCSD) for X-ray crystallographic analysis of DO253; and J. Wang and C. Chen (Pharmaron) for the measurement of tissue drug concentration.

Author information

Authors and Affiliations

Authors

Contributions

D.O., T.-A.I., V.F.V., J.R.T., and B.F.C. conceived the project and designed the experiments. T.-A.I. performed the HTS study. S.B. assisted with HTS assay development, and H.R. provided the small molecule library and screening instruments. D.O. synthesized and chemically characterized the compounds. J.J.H. synthesized JJH350. D.O., T.-A.I., A.R., O.U., and H.J. performed the biochemical and cellular experiments. J.B. performed the experiments with primary human macrophages. D.O. and T.-A.I. performed the in vivo compound dosing and lipidomic studies. A.R. performed the auditory tests. V.F.V. and J.R.T. performed the immunological experiments. T.-A.I., D.O., J.R.T. and B.F.C. wrote the manuscript.

Corresponding authors

Correspondence to John R. Teijaro or Benjamin F. Cravatt.

Ethics declarations

Competing interests

O.U. and A.R. are employees of and B.F.C. is a founder and advisor to Abide Therapeutics, a biotechnology company interested in developing serine hydrolase inhibitors and therapeutics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–29

Reporting Summary

Supplementary Note

Synthetic Procedures

Supplementary Table 3

Complete mass spectrometry–based ABPP data

Supplementary Table 4

Complete targeted lipidomics data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, D., Ichu, TA., Vartabedian, V.F. et al. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat Chem Biol 14, 1099–1108 (2018). https://doi.org/10.1038/s41589-018-0155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0155-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing