Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo chloride concentrations surge to proteotoxic levels during acid stress

Abstract

To successfully colonize the intestine, bacteria must survive passage through the stomach. The permeability of the outer membrane renders the periplasm of Gram-negative bacteria vulnerable to stomach acid, which inactivates proteins. Here we report that the semipermeable nature of the outer membrane allows the development of a strong Donnan equilibrium across this barrier at low pH. As a result, when bacteria are exposed to conditions that mimic gastric juice, periplasmic chloride concentrations rise to levels that exceed 0.6 M. At these chloride concentrations, proteins readily aggregate in vitro. The acid sensitivity of strains lacking acid-protective chaperones is enhanced by chloride, suggesting that these chaperones protect periplasmic proteins both from acidification and from the accompanying accumulation of chloride. These results illustrate how organisms have evolved chaperones to respond to the substantial chemical threat imposed by otherwise innocuous chloride concentrations that are amplified to proteotoxic levels by low-pH-induced Donnan equilibrium effects.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Sulfate promotes the acid-induced aggregation of proteins.
Fig. 2: Chloride-dependent aggregation of periplasmic proteins.
Fig. 3: Acid exposure results in an accumulation of chloride within the periplasm due to a Donnan equilibrium.
Fig. 4: E. coli lacking HdeA and HdeB are more sensitive to acid shock and periplasmic protein aggregation in the presence of chloride.
Fig. 5: Mechanism of chloride-induced protein aggregation in acid and its effect on the E. coli periplasm.

Data availability

All data used in this study are included in this published article (and its supplementary information files) and are available from the corresponding authors upon reasonable request.

References

  1. Dressman, J. B. et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 7, 756–761 (1990).

    Article  CAS  Google Scholar 

  2. Russell, T. L. et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm. Res. 10, 187–196 (1993).

    Article  CAS  Google Scholar 

  3. Smith, J. L. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J. Food. Prot. 66, 1292–1303 (2003).

    Article  Google Scholar 

  4. Kanjee, U. & Houry, W. A. Mechanisms of acid resistance in Escherichia coli. Annu. Rev. Microbiol. 67, 65–81 (2013).

    Article  CAS  Google Scholar 

  5. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Malki, A. et al. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J. Biol. Chem. 283, 13679–13687 (2008).

    Article  CAS  Google Scholar 

  7. Hong, W. et al. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J. Biol. Chem. 280, 27029–27034 (2005).

    Article  CAS  Google Scholar 

  8. Kern, R., Malki, A., Abdallah, J., Tagourti, J. & Richarme, G. Escherichia coli HdeB is an acid stress chaperone. J. Bacteriol. 189, 603–610 (2007).

    Article  CAS  Google Scholar 

  9. Tapley, T. L. et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc. Natl. Acad. Sci. USA 106, 5557–5562 (2009).

    Article  CAS  Google Scholar 

  10. Zhang, M. et al. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 7, 671–677 (2011).

    Article  CAS  Google Scholar 

  11. Zhang, S. et al. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance. Proc. Natl. Acad. Sci. USA 113, 10872–10877 (2016).

    Article  CAS  Google Scholar 

  12. Gajiwala, K. S. & Burley, S. K. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295, 605–612 (2000).

    Article  CAS  Google Scholar 

  13. Tapley, T. L., Franzmann, T. M., Chakraborty, S., Jakob, U. & Bardwell, J. C. A. Protein refolding by pH-triggered chaperone binding and release. Proc. Natl. Acad. Sci. USA 107, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  14. Dahl, J.-U. et al. HdeB functions as an acid-protective chaperone in bacteria. J. Biol. Chem. 290, 65–75 (2015).

    Article  CAS  Google Scholar 

  15. Ding, J., Yang, C., Niu, X., Hu, Y. & Jin, C. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Sci. Rep. 5, 16856 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Meeroff, J. C., Rofrano, J. A. & Meeroff, M. Electrolytes of the gastric juice in health and gastroduodenal diseases. Am. J. Dig. Dis. 18, 865–872 (1973).

    Article  CAS  Google Scholar 

  17. Goto, Y. & Fink, A. L. Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28, 945–952 (1989).

    Article  CAS  Google Scholar 

  18. Goto, Y., Takahashi, N. & Fink, A. L. Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480–3488 (1990).

    Article  CAS  Google Scholar 

  19. Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T. & Palleros, D. R. Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry 33, 12504–12511 (1994).

    Article  CAS  Google Scholar 

  20. Goto, Y. & Fink, A. L. Phase diagram for acidic conformational states of apomyoglobin. J. Mol. Biol. 214, 803–805 (1990).

    Article  CAS  Google Scholar 

  21. Goto, Y., Calciano, L. J. & Fink, A. L. Acid-induced folding of proteins. Proc. Natl. Acad. Sci. USA 87, 573–577 (1990).

    Article  CAS  Google Scholar 

  22. Lin, S. et al. Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. J. Am. Chem. Soc. 133, 20581–20587 (2011).

    Article  CAS  Google Scholar 

  23. Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug. Dispos. 16, 351–380 (1995).

    Article  CAS  Google Scholar 

  25. Stock, J. B., Rauch, B. & Roseman, S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 252, 7850–7861 (1977).

    CAS  Google Scholar 

  26. Sen, K., Hellman, J. & Nikaido, H. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J. Biol. Chem. 263, 1182–1187 (1988).

    CAS  Google Scholar 

  27. Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. Jr. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J. Mol. Biol. 222, 281–300 (1991).

    Article  CAS  Google Scholar 

  28. Cayley, S., Lewis, B. A. & Record, M. T. Jr. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 174, 1586–1595 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Cayley, D. S., Guttman, H. J. & Record, M. T. Jr. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78, 1748–1764 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic. Acid. Res. Mol. Biol. 75, 293–320 (2003).

    Article  CAS  Google Scholar 

  31. Quan, S., Hiniker, A., Collet, J.-F. & Bardwell, J. C. A. Isolation of bacteria envelope proteins. Methods Mol. Biol. 966, 359–366 (2013).

    Article  CAS  Google Scholar 

  32. Iyer, R., Iverson, T. M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002).

    Article  CAS  Google Scholar 

  33. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004).

    Article  CAS  Google Scholar 

  34. Richard, H. & Foster, J. W. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186, 6032–6041 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, M. et al. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli. Nat. Commun. 5, 4981 (2014).

  36. Bloomfield, V. A., Crothers, D. M. & Tinoco, I. Jr. Nucleic Acids: Structures, Properties and Functions (University Science Books, Sausalito, CA, 2000).

  37. Gray, M. J. et al. Polyphosphate is a primordial chaperone. Mol. Cell 53, 689–699 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Docter, B. E., Horowitz, S., Gray, M. J., Jakob, U. & Bardwell, J. C. A. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res. 44, 4835–4845 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Lennon, C. W. et al. Folding optimization in vivo uncovers new chaperones. J. Mol. Biol. 427, 2983–2994 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  42. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Koldewey (University of Michigan) for providing technical expertise on the analytical ultracentrifugation experiments, R. Mitra (University Michigan) for preliminary assistance with the CD experiments and C. Miller (Brandeis U.) for the E. coli strain with both Cl/H+ antiporters knocked out. The primary antibodies for detecting DsbC and AppA were a gift from M. Berkmen (New England BioLabs); the antibodies for detecting Skp, SurA and DegP were a gift from T. Silhavy (Princeton University); the antibody for detecting RBP was a gift from M. Ehrmann (University of Duisburg-Essen). We also thank the Purdue Cryo-EM facility, especially S. Mattoo (Purdue University) for arranging access and T. Klose (Purdue University) for help with data collection. This work was funded by the National Institutes of Health (R01-GM102829 to J.C.A.B. and R00-GM111767 to R.B.S.) and an Alfred P. Sloan Research Fellowship (to R.B.S.). J.C.A.B is a Howard Hughes Medical Investigator.

Author information

Authors and Affiliations

Authors

Contributions

F.S. and J.C.A.B. conceived the project. F.S. and H.H. performed the experiments. R.B.S. provided technical expertise on the solute distribution measurements. All authors analyzed the data. F.S. wrote the manuscript with contributions from R.B.S. and J.C.A.B.

Corresponding authors

Correspondence to Frederick Stull or James C. A. Bardwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–6

Reporting Summary

Supplementary Video 1

Cryo-electron tomography tilt of E. coli at pH 2

Supplementary Video 2

Cryo-electron tomography tilt of E. coli at pH 7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stull, F., Hipp, H., Stockbridge, R.B. et al. In vivo chloride concentrations surge to proteotoxic levels during acid stress. Nat Chem Biol 14, 1051–1058 (2018). https://doi.org/10.1038/s41589-018-0143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0143-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing