Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small molecules that target group II introns are potent antifungal agents

Abstract

Specific RNA structures control numerous metabolic processes that impact human health, and yet efforts to target RNA structures de novo have been limited. In eukaryotes, the self-splicing group II intron is a mitochondrial RNA tertiary structure that is absent in vertebrates but essential for respiration in plants, fungi and yeast. Here we show that this RNA can be targeted through a process of high-throughput in vitro screening, SAR and lead optimization, resulting in high-affinity compounds that specifically inhibit group IIB intron splicing in vitro and in vivo and lack toxicity in human cells. The compounds are potent growth inhibitors of the pathogen Candida parapsilosis, displaying antifungal activity comparable to that of amphotericin B. These studies demonstrate that RNA tertiary structures can be successfully targeted de novo, resulting in pharmacologically valuable compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The assays for compound development.
Fig. 2: Summary of SAR studies on compound 1.
Fig. 3: Active compounds selectively inhibit group II splicing in vivo.
Fig. 4: Active compounds selectively inhibit group II splicing in vitro.

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the paper and/or its supplementary information files.

References

  1. Blount, K. F. & Breaker, R. R. Riboswitches as antibacterial drug targets. Nat. Biotechnol. 24, 1558–1564 (2006).

    Article  CAS  Google Scholar 

  2. Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

    Article  CAS  Google Scholar 

  3. Howe, J. A. et al. Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol. 13, 946–954 (2016).

    Article  Google Scholar 

  4. Wang, H. et al. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem. Biol. 24, 576–588 (2017).

    Article  CAS  Google Scholar 

  5. Kim, J. N. et al. Design and antimicrobial action of purine analogues that bind guanine riboswitches. ACS Chem. Biol. 4, 915–927 (2009).

    Article  CAS  Google Scholar 

  6. Blount, K. F., Wang, J. X., Lim, J., Sudarsan, N. & Breaker, R. R. Antibacterial lysine analogs that target lysine riboswitches. Nat. Chem. Biol. 3, 44–49 (2007).

    Article  CAS  Google Scholar 

  7. Blount, K. F. et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob. Agents Chemother. 59, 5736–5746 (2015).

    Article  CAS  Google Scholar 

  8. von Ahsen, U., Davies, J. & Schroeder, R. Antibiotic inhibition of group I ribozyme function. Nature 353, 368–370 (1991).

    Article  Google Scholar 

  9. Disney, M. D., Childs, J. L. & Turner, D. H. Hoechst 33258 selectively inhibits group I intron self-splicing by affecting RNA folding. ChemBioChem 5, 1647–1652 (2004).

    Article  CAS  Google Scholar 

  10. Mei, H. Y., Cui, M., Lemrow, S. M. & Czarnik, A. W. Discovery of selective, small-molecule inhibitors of RNA complexes. II. Self-splicing group I intron ribozyme. Bioorg. Med. Chem. 5, 1185–1195 (1997).

    Article  CAS  Google Scholar 

  11. Patwardhan, N. N. et al. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MedChemComm 8, 1022–1036 (2017).

    Article  CAS  Google Scholar 

  12. Schroeder, R., Waldsich, C. & Wank, H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 19, 1–9 (2000).

    Article  CAS  Google Scholar 

  13. Colameco, S. & Elliot, M. A. Non-coding RNAs as antibiotic targets. Biochem. Pharmacol. 133, 29–42 (2017).

    Article  CAS  Google Scholar 

  14. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    Article  CAS  Google Scholar 

  15. Blaha, G. M., Polikanov, Y. S. & Steitz, T. A. Elements of ribosomal drug resistance and specificity. Curr. Opin. Struct. Biol. 22, 750–758 (2012).

    Article  CAS  Google Scholar 

  16. Eubanks, C. S., Forte, J. E., Kapral, G. J. & Hargrove, A. E. Small molecule-based pattern recognition to classify RNA structure. J. Am. Chem. Soc. 139, 409–416 (2017).

    Article  CAS  Google Scholar 

  17. Morgan, B. S., Forte, J. E., Culver, R. N., Zhang, Y. & Hargrove, A. E. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Edn. Engl. 56, 13498–13502 (2017).

    Article  CAS  Google Scholar 

  18. Bernat, V. & Disney, M. D. RNA structures as mediators of neurological diseases and as drug targets. Neuron 87, 28–46 (2015).

    Article  CAS  Google Scholar 

  19. Costales, M. G. et al. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J. Am. Chem. Soc. 139, 3446–3455 (2017).

    Article  CAS  Google Scholar 

  20. Yang, W. Y., Gao, R., Southern, M., Sarkar, P. S. & Disney, M. D. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10. Nat. Commun. 7, 11647 (2016).

    Article  CAS  Google Scholar 

  21. Dibrov, S. M. et al. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J. Med. Chem. 57, 1694–1707 (2014).

    Article  CAS  Google Scholar 

  22. Barros, S. A., Yoon, I. & Chenoweth, D. M. Modulation of the E. coli rpoH temperature sensor with triptycene-cased small molecules. Angew. Chem. Int. Edn Engl. 55, 8258–8261 (2016).

    Article  CAS  Google Scholar 

  23. Sztuba-Solinska, J. et al. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays. J. Am. Chem. Soc. 136, 8402–8410 (2014).

    Article  CAS  Google Scholar 

  24. Lorenz, D. A., Song, J. M. & Garner, A. L. High-throughput platform assay technology for the discovery of pre-microRNA-selective small molecule probes. Bioconjug. Chem. 26, 19–23 (2015).

    Article  CAS  Google Scholar 

  25. Kett, D. H., Azoulay, E., Echeverria, P. M. & Vincent, J. L. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit. Care Med. 39, 665–670 (2011).

    Article  Google Scholar 

  26. Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 20, 5–10 (2014).

    Article  Google Scholar 

  27. Morales, D. K. et al. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4, e00526–12 (2013).

    Article  CAS  Google Scholar 

  28. Marcia, M. & Pyle, A. M. Principles of ion recognition in RNA: insights from the group II intron structures. RNA 20, 516–527 (2014).

    Article  CAS  Google Scholar 

  29. Zhao, C. & Pyle, A. M. Structural insights into the mechanism of group II intron splicing. Trends Biochem. Sci. 42, 470–482 (2017).

    Article  CAS  Google Scholar 

  30. Perlman, P. S. Genetic analysis of RNA splicing in yeast mitochondria. Methods Enzymol. 181, 539–558 (1990).

    Article  CAS  Google Scholar 

  31. Rossignol, T. et al. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot. Cell 8, 550–559 (2009).

    Article  CAS  Google Scholar 

  32. Richard, M. L., Nobile, C. J., Bruno, V. M. & Mitchell, A. P. Candida albicans biofilm-defective mutants. Eukaryot. Cell 4, 1493–1502 (2005).

    Article  CAS  Google Scholar 

  33. Su, L. J., Waldsich, C. & Pyle, A. M. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res. 33, 6674–6687 (2005).

    Article  CAS  Google Scholar 

  34. Perez-Martinez, X., Broadley, S. A. & Fox, T. D. Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J. 22, 5951–5961 (2003).

    Article  CAS  Google Scholar 

  35. Dziembowski, A. et al. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J. Biol. Chem. 278, 1603–1611 (2003).

    Article  CAS  Google Scholar 

  36. Luedtke, N. W., Liu, Q. & Tor, Y. RNA-ligand interactions: affinity and specificity of aminoglycoside dimers and acridine conjugates to the HIV-1 Rev response element. Biochemistry 42, 11391–11403 (2003).

    Article  CAS  Google Scholar 

  37. Tanner, M. & Cech, T. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA 2, 74–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, C. F., Costa, M., Bassi, G., Lai, Y. K. & Michel, F. Recurrent insertion of 5′-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs. RNA 17, 1321–1335 (2011).

    Article  CAS  Google Scholar 

  39. Moen, M. D., Lyseng-Williamson, K. A. & Scott, L. J. Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 69, 361–392 (2009).

    Article  CAS  Google Scholar 

  40. Velagapudi, S. P. et al. Design of a small molecule against an oncogenic noncodingRNA. Proc. Natl Acad. Sci. USA 113, 5898–5903 (2016).

    Article  CAS  Google Scholar 

  41. Mulhbacher, J. et al. Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog. 6, e1000865 (2010).

    Article  Google Scholar 

  42. Baell, J. & Walters, M. A. Chemistry: chemical con artists foil drug discovery. Nature 513, 481–483 (2014).

    Article  CAS  Google Scholar 

  43. Baell, J. B. & Nissink, J. W. M. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem. Biol. 13, 36–44 (2018).

    Article  CAS  Google Scholar 

  44. Jasial, S., Hu, Y. & Bajorath, J. How frequently are pan-assay interference compounds active? Large-scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J. Med. Chem. 60, 3879–3886 (2017).

    Article  CAS  Google Scholar 

  45. Capuzzi, S. J., Muratov, E. N. & Tropsha, A. Phantom PAINS: problems with the utility of alerts for pan-assay INterference CompoundS. J. Chem. Inf. Model. 57, 417–427 (2017).

    Article  CAS  Google Scholar 

  46. Re, A., Joshi, T., Kulberkyte, E., Morris, Q. & Workman, C. T. RNA-protein interactions: an overview. Methods Mol. Biol. 1097, 491–521 (2014).

    Article  CAS  Google Scholar 

  47. Wincott, F. et al. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 23, 2677–2684 (1995).

    Article  CAS  Google Scholar 

  48. Dickey, T. H. & Pyle, A. M. The SMAD3 transcription factor binds complex RNA structures with high affinity. Nucleic Acids Res. 45, 11980–11988 (2017).

    Article  CAS  Google Scholar 

  49. Chin, K. & Pyle, A. M. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5′-splice site selection. RNA 1, 391–406 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedorova, O., Mitros, T. & Pyle, A. M. Domains 2 and 3 interact to form critical elements of the group II intron active site. J. Mol. Biol. 330, 197–209 (2003).

    Article  CAS  Google Scholar 

  51. Pyle, A. M. & Green, J. B. Building a kinetic framework for group II intron ribozyme activity: quantitation of interdomain binding and reaction rate. Biochemistry 33, 2716–2725 (1994).

    Article  CAS  Google Scholar 

  52. Zingler, N., Solem, A. & Pyle, A. M. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron. Nucleic Acids Res. 38, 6602–6609 (2010).

    Article  CAS  Google Scholar 

  53. Daniels, D. L., Michels, W. J. Jr & Pyle, A. M. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. 256, 31–49 (1996).

    Article  CAS  Google Scholar 

  54. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    Article  CAS  Google Scholar 

  55. Clinical and Laboratory Standards Institute. Reference Method For Broth Dilution Antifungal SusceptibilityTesting of Yeasts; Approved Standard—Third Edition (Clinical and Laboratory Standards Institute, Wayne, PA,2008).

  56. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Umlauf, P. Gareiss and J. Merkel at Yale Center for Molecular Discovery for their help with high-throughput screening. We are grateful to K. Blount and R. Breaker for help with setting up MIC experiments. We thank J. Sinclair and A. Schepartz for sharing their expertise on cytotoxicity experiments. We gratefully acknowledge T. Fox (Cornell University) for sharing wild-type and mtDNA intronless S. cerevisiae strains. We thank S. Woodson (Johns Hopkins Unversity) for sharing the Azo-pre-tRNA plasmid. We thank D. Chenoweth and A. DeBerardinis for helpful discussions. We are grateful to S. Herzon and R. Breaker for comments on the manuscript. We are grateful to C. Zhao for help in making Supplementary Fig. 1. A.M.P. is an Investigator, and O.F is a Research Specialist in the Howard Hughes Medical Institute. This work was supported by NIH grants RO1GM50313 to A.M.P. and R43 AI115951 to M.V.Z.

Author information

Authors and Affiliations

Authors

Contributions

A.M.P., O.F. and G.E.J. designed the study. All authors contributed to this work as follows: O.F. performed in vitro biochemical studies of splicing inhibition, carried out cytotoxicity and MIC experiments; G.E.J. designed small-molecule inhibitors and carried out organic synthesis of small molecules; R.L.A. performed in vivo splicing inhibition experiments in S. cerevisiae and C. parapsilosis; L.Y. performed organic synthesis of small molecules; M.C.V.Z. designed small-molecule inhibitors; A.M.P., O.F., G.E.J. and R.L.A. wrote the paper.

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

Yale University has filed a provisional patent application on the work developed in this manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3

Reporting Summary

Supplementary Note

Synthetic procedures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, O., Jagdmann, G.E., Adams, R.L. et al. Small molecules that target group II introns are potent antifungal agents. Nat Chem Biol 14, 1073–1078 (2018). https://doi.org/10.1038/s41589-018-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0142-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing