Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability

Abstract

T cell receptor cross-reactivity allows a fixed T cell repertoire to respond to a much larger universe of potential antigens. Recent work has emphasized the importance of peptide structural and chemical homology, as opposed to sequence similarity, in T cell receptor cross-reactivity. Surprisingly, though, T cell receptors can also cross-react between ligands with little physiochemical commonalities. Studying the clinically relevant receptor DMF5, we demonstrate that cross-recognition of such divergent antigens can occur through mechanisms that involve heretofore unanticipated rearrangements in the peptide and presenting MHC protein, including binding-induced peptide register shifts and extensions from MHC peptide binding grooves. Moreover, cross-reactivity can proceed even when such dramatic rearrangements do not translate into structural or chemical molecular mimicry. Beyond demonstrating new principles of T cell receptor cross-reactivity, our results have implications for efforts to predict and control T cell specificity and cross-reactivity and highlight challenges associated with predicting T cell reactivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two distinctive classes of peptides recognized by the DMF5 TCR.
Fig. 2: The DRG peptide MMWDRGLGMM adopts a conformation distinct from that of MART-1 when bound to HLA-A2 and perturbs the structure of the HLA-A2 α2 helix.
Fig. 3: The DMF5 TCR does not show a preference for DRG vs. GIG peptides but the classes are recognized via distinct mechanisms.
Fig. 4: DMF5 recognizes the GIG peptides with common structural solutions.
Fig. 5: DMF5 recognizes the MMWDRGLGMM DRG peptide very differently, inducing a peptide register shift and C-terminal extension while returning the HLA-A2 α2 helix to its usual conformation.
Fig. 6: The GIG and register-shifted DRG surfaces are recognized by DMF5 through small TCR side chain rearrangements and differential use of interfacial water.

Similar content being viewed by others

Data availability

Crystallographic data sets are available in the PDB repository under ascension codes 6AMT (MMWDRGLGMM/HLA-A2), 6AMU (DMF5-MMWDRGLGMM/HLA-A2), and 6AM5 (DMF5-SMLGIGIVPV/HLA-A2). Other data are available from the corresponding author upon request.

References

  1. Wucherpfennig, K. W. et al. Polyspecificity of T cell and B cell receptor recognition. Semin. Immunol. 19, 216–224 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Singh, N. K. et al. Emerging concepts in TCR specificity: rationalizing and (maybe) predicting outcomes. J. Immunol. 199, 2203–2213 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Maynard, J. et al. Structure of an autoimmune T cell receptor complexed with class II peptide- MHC: insights into MHC bias and antigen specificity. Immunity 22, 81–92 (2005).

    CAS  PubMed  Google Scholar 

  7. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Adams, J. J. et al. Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nat. Immunol. 17, 87–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Birnbaum, Michael E. et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest. 126, 2191–2204 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hausmann, S. et al. Peptide recognition by two HLA-A2/Tax11-19-specific T cell clones in relationship to their MHC/peptide/TCR crystal structures. J. Immunol. 162, 5389–5397 (1999).

    CAS  PubMed  Google Scholar 

  12. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Borbulevych, O. Y., Piepenbrink, K. H. & Baker, B. M. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. J. Immunol. 186, 2950–2958 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Borbulevych, O. Y. et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31, 885–896 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Frankild, S., de Boer, R. J., Lund, O., Nielsen, M. & Kesmir, C. Amino acid similarity accounts for T cell cross-reactivity and for ‘holes’ in the T cell repertoire. PLoS One 3, e1831 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rubio-Godoy, V. et al. Positional scanning-synthetic peptide library-based analysis of self- and pathogen-derived peptide cross-reactivity with tumor-reactive melan-A-specific CTL. J. Immunol. 169, 5696–5707 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Dutoit, V. et al. Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/melan-A peptide multimer+ CD8+ T cells in humans. J. Exp. Med. 196, 207–216 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brehm, M. A. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Clute, S. C. et al. Broad cross-reactive TCR repertoires recognizing dissimilar Epstein-Barr and influenza A virus epitopes. J. Immunol. 185, 6753–6764 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Miles, J. J., McCluskey, J., Rossjohn, J. & Gras, S. Understanding the complexity and malleability of T-cell recognition. Immunol. Cell Biol. 93, 433–441 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Armstrong, K. M., Piepenbrink, K. H. & Baker, B. M. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem. J. 415, 183–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, L. A. et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J. Immunol. 177, 6548–6559 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chodon, T. et al. Adoptive Transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 20, 2457–2465 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Borbulevych, O. Y., Santhanagopolan, S. M., Hossain, M. & Baker, B. M. TCRs used in cancer gene therapy cross-react with MART-1/melan-A tumor antigens via distinct mechanisms. J. Immunol. 187, 2453–2463 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Ayres, C. M., Scott, D. R., Corcelli, S. A. & Baker, B. M. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity. Sci. Rep. 6, 25070 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gee, M. H. et al. Antigen Identification for Orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563.e516 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Riley, T. P. et al. A generalized framework for computational design and mutational scanning of T-cell receptor binding interfaces. Protein Eng. Des. Sel. 29, 595–606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Riley, T. P., Singh, N. K., Pierce, B. G., Weng, Z. & Baker, B. M. in Computational Design of Ligand Binding Proteins. (ed. Stoddard, L. B.) 319–340 (Springer New York, New York, NY, 2016).

  30. Sliz, P. et al. Crystal structures of two closely related but antigenically distinct HLA- A2/melanocyte-melanoma tumor-antigen peptide complexes. J. Immunol. 167, 3276–3284 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Borbulevych, O. Y. et al. Structures of MART-126/27-35 peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J. Mol. Biol. 372, 1123–1136 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Macdonald, W. A. et al. T cell allorecognition via molecular mimicry. Immunity 31, 897–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. McMurtrey, C. et al. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. eLife 5, e12556 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Blevins, S. J. et al. How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire. Proc. Natl. Acad. Sci. USA 113, E1276–E1285 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Smith, K. J. et al. An altered position of the α2 helix of MHC class I is revealed by the crystal structure of HLA-B*3501. Immunity 4, 203–213 (1996).

    Article  PubMed  Google Scholar 

  36. Motozono, C. et al. Distortion of the major histocompatibility complex class I binding groove to accommodate an insulin-derived 10-mer peptide. J. Biol. Chem. 290, 18924–18933 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Collins, E. J., Garboczi, D. N. & Wiley, D. C. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371, 626–629 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC. Immunol. 9, 1 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mohammed, F. et al. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat. Immunol. 9, 1236 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Pellicci, D. G. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat. Immunol. 12, 827 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jones, L. L., Colf, L. A., Stone, J. D., Garcia, K. C. & Kranz, D. M. Distinct CDR3 Conformations in TCRs determine the level of cross-reactivity for diverse antigens, but not the docking orientation. J. Immunol. 181, 6255–6264 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Colf, L. A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Reiser, J. B. et al. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16, 345–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Bovay, A. et al. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus. Eur. J. Immunol. 48, 258–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Cole, D. K. et al. Germline-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J. Biol. Chem. 284, 27281–27289 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Van Braeckel-Budimir, N. et al. A T cell receptor locus harbors a malaria-specific immune response gene. Immunity 47, 835–847.e834 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Das, R. & Baker, D. Macromolecular modeling with rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein- protein complexes. Proc. Natl. Acad. Sci. USA 99, 14116–14121 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Davis-Harrison, R. L., Armstrong, K. M. & Baker, B. M. Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J. Mol. Biol. 346, 533–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hellman, L. M. et al. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. J. Immunol. Methods 432, 95–101 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Morgan, C. S., Holton, J. M., Olafson, B. D., Bjorkman, P. J. & Mayo, S. L. Circular dichroism determination of class I MHC-peptide equilibrium dissociation constants. Protein Sci. 6, 1771–1773 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Blevins, S. J. & Baker, B. M. Using global analysis to extend the accuracy and precision of binding measurements with T cell receptors and their peptide/MHC ligands. Front. Mol. Biosci. 4, 1–9 (2017).

    Article  CAS  Google Scholar 

  56. Piepenbrink, K. H., Gloor, B. E., Armstrong, K. M. & Baker, B. M. Methods for quantifying T cell receptor binding affinities and thermodynamics. Methods Enzymol. 466, 359–381 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Spear, T. T. et al. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J. Leukoc. Biol. 100, 545–557 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Cole, D. J. et al. Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res. 55, 748–752 (1995).

    CAS  PubMed  Google Scholar 

  59. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences, Edn. 2nd. (McGraw-Hill, New York, NY, 1992).

Download references

Acknowledgements

Authors were supported by NIH grants GM118166 and AI29543 (B.M.B.); CA154778 and CA153789 (M.I.N.); and AI103867 (K.C.G.); and American Cancer Society grant IRG-14-195-01 (L.M.H.). T.P.R. and J.A.A. were supported by fellowships from the Indiana CTSI, funded in part by NIH grants TR001107 and TR001108. M.H.G. was supported by a Stanford Graduate Research Fellowship and NIH grant CA216926. J.L.M. was supported by NIH grant CA175127. K.C.G. is supported by the Howard Hughes Medical Institute and the Parker Institute for Cancer Immunotherapy.

Author information

Authors and Affiliations

Authors

Contributions

Modeling, crystallographic, and TCR binding experiments were performed by T.P.R., L.M.H., and J.A.A. C.W.V.K assisted with crystallographic data collection and analysis. Thermal stability experiments were performed by T.P.R. and L.M.H. Functional experiments were performed by L.M.H. with assistance from K.C.F. in T cell transduction. Data analysis was performed by T.P.R., L.M.H., M.H.G., J.L.M., J.A.A., and C.W.V.K. The manuscript was drafted and edited by T.P.R., M.H.G., J.L.M., and B.M.B. The project was conceptualized by T.P.R., K.C.G., and B.M.B. Personnel were supervised by M.I.N., K.C.G., and B.M.B.

Corresponding author

Correspondence to Brian M. Baker.

Ethics declarations

Competing interests

T.P.R. is employed by a new startup company that uses structural information to explore and modulate TCR specificity. B.M.B. is on the board of this company.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4, Supplementary Figures 1–4

Reporting Summary

Supplementary Video 1

Animation shown the transition of the MMWDRGLGMM/HLA-A2 complex from TCR-free to TCR-bound

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riley, T.P., Hellman, L.M., Gee, M.H. et al. T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability. Nat Chem Biol 14, 934–942 (2018). https://doi.org/10.1038/s41589-018-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0130-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing