Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response

Abstract

Heat shock response (HSR) is an ancient signaling pathway leading to thermoprotection of nearly all living organisms. Emerging evidence suggests that intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) serves as a molecular ‘thermometer’ by reporting ambient temperature fluctuations. Whether and how O-GlcNAc modification regulates HSR remains unclear. Here we report that, upon heat shock stress, the key translation initiation factor eIF4GI undergoes dynamic O-GlcNAcylation at the N-terminal region. Without O-GlcNAc modification, the preferential translation of stress mRNAs is impaired. Unexpectedly, stress mRNAs are entrapped within stress granules (SGs) that are no longer dissolved during stress recovery. Mechanistically, we show that stress-induced eIF4GI O-GlcNAcylation repels poly(A)-binding protein 1 and promotes SG disassembly, thereby licensing stress mRNAs for selective translation. Using various eIF4GI mutants created by CRISPR/Cas9, we demonstrate that eIF4GI acts as a translational switch via reversible O-GlcNAcylation. Our study reveals a central mechanism linking heat stress sensing, protein remodeling, SG dynamics and translational reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cells lacking OGT exhibit deficient Hsp70 translation.
Fig. 2: eIF4GI undergoes dynamic O-GlcNAcylation in response to heat shock stress.
Fig. 3: eIF4GI O-GlcNAcylation repels PABP1.
Fig. 4: Depletion of O-GlcNAcylation from eIF4GI prevents SG disassembly.
Fig. 5: The N terminus of eIF4GI acts a functional switch via O-GlcNAcylation.
Fig. 6: Rescuing effects of eIF4GI variants in SG dynamics and Hsp70 synthesis.

Similar content being viewed by others

References

  1. Hardivillé, S. & Hart, G. W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20, 208–213 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bond, M. R. & Hanover, J. A. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, (869–880 (2015).

    Google Scholar 

  3. Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452–465 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Janetzko, J. & Walker, S. The making of a sweet modification: structure and function of O-GlcNAc transferase. J. Biol. Chem. 289, 34424–34432 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Keembiyehetty, C. et al. Conditional knock-out reveals a requirement for O-linked N-acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J. Biol. Chem. 290, 7097–7113 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Radermacher, P. T. et al. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proc. Natl Acad. Sci. USA 111, 5592–5597 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Groves, J. A., Lee, A., Yildirir, G. & Zachara, N. E. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 18, 535–558 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zachara, N. E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Martinez, M. R., Dias, T. B., Natov, P. S. & Zachara, N. E. Stress-induced O-GlcNAcylation: an adaptive process of injured cells. Biochem. Soc. Trans. 45, 237–249 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kazemi, Z., Chang, H., Haserodt, S., McKen, C. & Zachara, N. E. O-linked β-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3β-dependent manner. J. Biol. Chem. 285, 39096–39107 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Richter, K., Haslbeck, M. & Buchner, J. The heat shock response: life on the verge of death. Mol. Cell 40, 253–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Anckar, J. & Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vera, M. et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 3, e03164 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zander, G. et al. mRNA quality control is bypassed for immediate export of stress-responsive transcripts. Nature 540, 593–596 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Buchan, J. R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cherkasov, V. et al. Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23, 2452–2462 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Protter, D. S. & Parker, R. Principles and properties of stress granules. Trends Cell Biol 26, 668–679 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sun, J., Conn, C. S., Han, Y., Yeung, V. & Qian, S. B. PI3K-mTORC1 attenuates stress response by inhibiting cap-independent Hsp70 translation. J. Biol. Chem. 286, 6791–6800 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Zeidan, Q., Wang, Z., De Maio, A. & Hart, G. W. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol. Biol. Cell 21, 1922–1936 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ohn, T., Kedersha, N., Hickman, T., Tisdale, S. & Anderson, P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat. Cell Biol. 10, 1224–1231 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gradi, A. et al. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18, 334–342 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wang, Z. et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci. Signal. 3, ra2 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Sonenberg, N. & Dever, T. E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Howard, A. & Rogers, A. N. Role of translation initiation factor 4G in lifespan regulation and age-related health. Ageing Res. Rev. 13, 115–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Preiss, T. & Hentze, M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Yanagiya, A. et al. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol. Cell. Biol. 29, 1661–1669 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Walters, R. W., Muhlrad, D., Garcia, J. & Parker, R. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21, 1660–1671 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Coldwell, M. J. & Morley, S. J. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol. Cell. Biol. 26, 8448–8460 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Capotosti, F. et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144, 376–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Liberman, N. et al. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 43, 3764–3775 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Walsh, D. & Mohr, I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9, 860–875 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. McCormick, C. & Khaperskyy, D. A. Translation inhibition and stress granules in the antiviral immune response. Nat. Rev. Immunol. 17, 647–660 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Schneider, R. J. & Mohr, I. Translation initiation and viral tricks. Trends Biochem. Sci. 28, 130–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Piron, M., Vende, P., Cohen, J. & Poncet, D. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17, 5811–5821 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e1019 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Grabocka, E. & Bar-Sagi, D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 167, 1803–1813.e1812 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16, 288–304 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ramirez-Valle, F., Braunstein, S., Zavadil, J., Formenti, S.C. & Schneider, R.J. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J. Cell Biol. 181, 293–307 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Thomas, C. J., Cleland, T. P., Zhang, S., Gundberg, C. M. & Vashishth, D. Identification and characterization of glycation adducts on osteocalcin. Anal. Biochem. 525, 46–53 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. E. Zachara for providing inducible MEF Ogt knockout cell lines. We also thank Qian lab members for discussions. We are grateful to Cornell University Life Sciences Core Laboratory Center for confocal microscope imaging support and mass spectrometry. We thank the Proteomic and MS Facility of Cornell University for providing the mass spectrometry data. The Orbitrap Fusion mass spectrometer was supported by US National Institutes of Health SIG grant 1S10 OD017992-01. This work was supported by grants to S.-B.Q. from the US National Institutes of Health (R01AG042400 and R01GM1222814) and a HHMI Faculty Scholar grant (55108556).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and S.-B.Q conceived the project and designed the experiments. X.Z. performed the majority of experiments. X.E.S. assisted the experiments of eIF4GI isoforms and different chaperones in OGT knockout cells. S.-B.Q wrote the manuscripts. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Shu-Bing Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shu, X.E. & Qian, SB. O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat Chem Biol 14, 909–916 (2018). https://doi.org/10.1038/s41589-018-0120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0120-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing