Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Establishment of the PAR-1 cortical gradient by the aPKC-PRBH circuit

Abstract

Cell polarity is the asymmetric compartmentalization of cellular components. An opposing gradient of partitioning-defective protein kinases, atypical protein kinase C (aPKC) and PAR-1, at the cell cortex guides diverse asymmetries in the structure of metazoan cells, but the mechanism underlying their spatial patterning remains poorly understood. Here, we show in Caenorhabditis elegans zygotes that the cortical PAR-1 gradient is patterned as a consequence of dual mechanisms: stabilization of cortical dynamics and protection from aPKC-mediated cortical exclusion. Dual control of cortical PAR-1 depends on a physical interaction with the PRBH-domain protein PAR-2. Using a reconstitution approach in heterologous cells, we demonstrate that PAR-1, PAR-2, and polarized Cdc42-PAR-6-aPKC comprise the minimal network sufficient for the establishment of an opposing cortical gradient. Our findings delineate the mechanism governing cortical polarity, in which a circuit consisting of aPKC and the PRBH-domain protein ensures the local recruitment of PAR-1 to a well-defined cortical compartment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cortical localization of PAR-1 is tightly associated with cortical PAR-2.
Fig. 2: Cortical PAR-1 localization relies on interactions with phospholipids and PAR-2, and is antagonized by PKC-3.
Fig. 3: PAR-2 stimulates cortical localization of PAR-1 by inhibiting the activity of PKC-3 on PAR-1.
Fig. 4: PAR-2 stimulates cortical localization of PAR-1 by stabilizing its cortical dynamics.
Fig. 5: The PAR-1 cortical localization is essential for efficient segregation of P-granules.
Fig. 6: Polarized PKC-3 and PAR-2 are sufficient for the establishment of cortical PAR-1 gradient.

References

  1. 1.

    St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757–774 (2010).

    Article  CAS  Google Scholar 

  2. 2.

    Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  3. 3.

    Doerflinger, H., Benton, R., Torres, I. L., Zwart, M. F. & St Johnston, D. Drosophila anterior-posterior polarity requires actin-dependent PAR-1 recruitment to the oocyte posterior. Curr. Biol. 16, 1090–1095 (2006).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  4. 4.

    Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  6. 6.

    Cox, D. N., Lu, B., Sun, T. Q., Williams, L. T. & Jan, Y. N. Drosophila par-1 is required for oocyte differentiation and microtubule organization. Curr. Biol. 11, 75–87 (2001).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  7. 7.

    Matenia, D. & Mandelkow, E. M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem. Sci. 34, 332–342 (2009).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  8. 8.

    Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol. 14, 736–741 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  9. 9.

    Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J. 23, 4190–4201 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  11. 11.

    Motegi, F. et al. Microtubules induce self-organization of polarized PAR domains in Caenorhabditis elegans zygotes. Nat. Cell Biol. 13, 1361–1367 (2011).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Munro, E., Nance, J. & Priess, J. R. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 7, 413–424 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  13. 13.

    Zonies, S., Motegi, F., Hao, Y. & Seydoux, G. Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2. Development 137, 1669–1677 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  14. 14.

    Cowan, C. R. & Hyman, A. A. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  15. 15.

    Bailey, M. J. & Prehoda, K. E. Establishment of par-polarized cortical domains via phosphoregulated membrane motifs. Dev. Cell 35, 199–210 (2015).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Brzeska, H., Guag, J., Remmert, K., Chacko, S. & Korn, E. D. An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. J. Biol. Chem. 285, 5738–5747 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Hao, Y., Boyd, L. & Seydoux, G. Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev. Cell 10, 199–208 (2006).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  18. 18.

    Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  Article  Google Scholar 

  19. 19.

    Griffin, E. E., Odde, D. J. & Seydoux, G. Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146, 955–968 (2011).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  20. 20.

    Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Cheeks, R. J. et al. C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr. Biol. 14, 851–862 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Hurd, D. D. & Kemphues, K. J. PAR-1 is required for morphogenesis of the Caenorhabditis elegans vulva. Dev. Biol. 253, 54–65 (2003).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382, 455–458 (1996).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Shelton, C. A., Carter, J. C., Ellis, G. C. & Bowerman, B. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J. Cell Biol. 146, 439–451 (1999).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  25. 25.

    Moravcevic, K. et al. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell 143, 966–977 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  26. 26.

    Vaccari, T., Rabouille, C. & Ephrussi, A. The Drosophila PAR-1 spacer domain is required for lateral membrane association and for polarization of follicular epithelial cells. Curr. Biol. 15, 255–261 (2005).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075–3084 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol. 20, 1296–1303 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Beatty, A., Morton, D. & Kemphues, K. The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo. Development 137, 3995–4004 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Goehring, N. W. et al. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334, 1137–1141 (2011).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  31. 31.

    Goehring, N. W., Chowdhury, D., Hyman, A. A. & Grill, S. W. FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys. J. 99, 2443–2452 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  32. 32.

    Gallo, C. M., Wang, J. T., Motegi, F. & Seydoux, G. Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 330, 1685–1689 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell Proteomics 7, 282–289 (2008).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    CAS  Article  PubMed Central  Google Scholar 

  35. 35.

    Chen, W., Lim, H. H. & Lim, L. The CDC42 homologue from Caenorhabditis elegans. Complementation of yeast mutation. J. Biol. Chem. 268, 13280–13285 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ziman, M. et al. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4, 1307–1316 (1993).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  37. 37.

    Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982 (1997).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  38. 38.

    Chen, G. C., Kim, Y. J. & Chan, C. S. The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Genes Dev. 11, 2958–2971 (1997).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Fairn, G. D., Hermansson, M., Somerharju, P. & Grinstein, S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat. Cell Biol. 13, 1424–1430 (2011).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Johnson, D. I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  43. 43.

    Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535–544 (1991).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  44. 44.

    Marx, A., Nugoor, C., Panneerselvam, S. & Mandelkow, E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J. 24, 1637–1648 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Timm, T., Marx, A., Panneerselvam, S., Mandelkow, E. & Mandelkow, E. M. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci. 9, S9 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. 46.

    Sailer, A., Anneken, A., Li, Y., Lee, S. & Munro, E. Dynamic opposition of clustered proteins stabilizes cortical polarity in the C. elegans zygote. Dev. Cell 35, 131–142 (2015).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Kumfer, K. T. et al. CGEF-1 and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis elegans embryo. Mol. Biol. Cell 21, 266–277 (2010).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  48. 48.

    Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  49. 49.

    Carlton, J. G. & Cullen, P. J. Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15, 540–547 (2005).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  50. 50.

    Wang, Y. C., Khan, Z., Kaschube, M. & Wieschaus, E. F. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484, 390–393 (2012).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  51. 51.

    Gönczy, P. et al. zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Dev. Cell 1, 363–375 (2001).

    Article  PubMed Central  PubMed  Google Scholar 

  52. 52.

    Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Schubert, C. M., Lin, R., de Vries, C. J., Plasterk, R. H. & Priess, J. R. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell 5, 671–682 (2000).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  54. 54.

    Zhang, Z., Lim, Y. W., Zhao, P., Kanchanawong, P. & Motegi, F. ImaEdge: a platform for the quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization. J. Cell Sci. 130, 4200–4212 (2017).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  55. 55.

    Alberti, S., Gitler, A. D. & Lindquist, S. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24, 913–919 (2007).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Singapore National Research Foundation (NRF) to F.M. (NRF-NRFF-2012-08) and to P.K. (NRF-NRFF-2011-04); by the Ministry of Education AcRF Tier 2 to P.K. (MOE-T2-1-045 and MOE-T2-1-124); and by the Strategic Japan-Singapore Cooperative Research Program by the Japan Science and Technology Agency and the Singapore Agency for Science, Technology, and Research to F.M. (1514324022). We thank J. Ahringer (University of Cambridge); E. Bi and H. Okada (University of Pennsylvania); N. Goehring (The Francis Crick Institute); P. Gonczy (EPFL); M. Gotta (Université de Genève); K. Kemphues (Cornell University); W. Lim (UCSF); A. Schwager, C. Hoege and A. Hyman (MPI); S. Mathew, D. Ng, and D. Zhang (TLL, Singapore); G. Seydoux (Johns Hopkins University); T. Wohland, S. Yavas, A. Yuan and M. Xiaobing (NUS, Singapore); and the Caenorhabditis Genetic Center for strains, reagents and expertise. We also thank R. Zaidel-Bar and A. Wong (MBI, Singapore), E.E. Griffin (Dartmouth College), and members of the Motegi lab for helpful comments on the manuscript.

Author information

Affiliations

Authors

Contributions

The experimental design and presented ideas were developed together by all authors. F.M. guided the study and wrote the manuscript with input from all authors. Z.H. performed experiments in Fig. 6 and Supplementary Fig. 6. F.M. performed experiments in Fig. 3d,e. R.R. performed all other experiments. Z.Z. and P.K. developed program codes for cortical intensity analysis in Fig. 1c–j.

Corresponding author

Correspondence to Fumio Motegi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–2

Reporting Summary

Supplementary Dataset 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramanujam, R., Han, Z., Zhang, Z. et al. Establishment of the PAR-1 cortical gradient by the aPKC-PRBH circuit. Nat Chem Biol 14, 917–927 (2018). https://doi.org/10.1038/s41589-018-0117-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing