Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin

Abstract

Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote β-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor–arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of β-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPCRs signal to SH3-CPs via the 3 proline regions of β-arrestin 1.
Fig. 2: Residue contacts govern the propagation pathway from phospho-binding site 5 to conformational changes in the P1 and P2 region.
Fig. 3: 19F-NMR spectra and paramagnetic titration revealed structural alterations in the β-arrestin 1 PRs in response to the binding of SRC or different SH3 domains.
Fig. 4: A phospho-receptor/arrestin complex promoted the activation of SRC.
Fig. 5: A phospho-receptor–arrestin complex promoted disassembly of the autoinhibitory domains of SRC.
Fig. 6: Schematic description of the allosteric mechanism underlying arrestin-mediated GPCR functions at two levels.

Similar content being viewed by others

References

  1. Furness, S. G. et al. Ligand-dependent modulation of G protein conformation alters drug efficacy. Cell 167, 739–749.e11 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Flock, T. et al. Selectivity determinants of GPCR-G-protein binding. Nature 545, 317–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flock, T. et al. Universal allosteric mechanism for Gα activation by GPCRs. Nature 524, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Komolov, K. E. et al. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169, 407–421.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Homan, K. T. & Tesmer, J. J. Structural insights into G protein-coupled receptor kinase function. Curr. Opin. Cell Biol. 27, 25–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Reiter, E. & Lefkowitz, R. J. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kumari, P. et al. Functional competence of a partially engaged GPCR-β-arrestin complex. Nat. Commun. 7, 13416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, F. et al. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat. Commun. 6, 8202 (2015).

    Article  PubMed  Google Scholar 

  12. Dong, J.-H. et al. Adaptive activation of a stress response pathway improves learning and memory through Gs and β-arrestin-1-regulated lactate metabolism. Biol. Psychiatry 81, 654–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, C. H. et al. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat. Commun. 8, 14335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, W., Qiao, Y. & Li, Z. New insights into modes of GPCR activation. Trends Pharmacol. Sci. 39, 367–386 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao, K. et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011–12016 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, W. E. et al. β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of β-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J. Biol. Chem. 275, 11312–11319 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tobin, A. B., Butcher, A. J. & Kong, K. C. Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol. Sci. 29, 413–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peterson, Y. K. & Luttrell, L. M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 69, 256–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shukla, A. K. et al. Distinct conformational changes in β-arrestin report biased agonism at seven-transmembrane receptors. Proc. Natl Acad. Sci. USA 105, 9988–9993 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee, M. H. et al. The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature 531, 665–668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nuber, S. et al. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531, 661–664 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shukla, A. K. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cahill, T. J. III et al. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl Acad. Sci. USA 114, 2562–2567 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, Y. J. et al. Crystal structure of pre-activated arrestin p44. Nature 497, 142–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanson, S. M. et al. Structure and function of the visual arrestin oligomer. EMBO J. 26, 1726–1736 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gurevich, V. V. & Gurevich, E. V. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, M. et al. Conformation of receptor-bound visual arrestin. Proc. Natl Acad. Sci. USA 109, 18407–18412 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C. & Wthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taniguchi, K. et al. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rahmeh, R. et al. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc. Natl Acad. Sci. USA 109, 6733–6738 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang, Z. et al. Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model. Mol. Pharmacol. 92, 201–210 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Hirsch, J. A., Schubert, C., Gurevich, V. V. & Sigler, P. B. The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97, 257–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).

    PubMed  Google Scholar 

  40. Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Changeux, J. P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bourquard, T. et al. Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Sci. Rep. 5, 10760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fessart, D. et al. Src-dependent phosphorylation of β2-adaptin dissociates the β-arrestin-AP-2 complex. J. Cell Sci. 120, 1723–1732 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Ruschak, A. M. & Kay, L. E. Proteasome allostery as a population shift between interchanging conformers. Proc. Natl Acad. Sci. USA 109, E3454–E3462 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tugarinov, V., Sprangers, R. & Kay, L. E. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J. Am. Chem. Soc. 129, 1743–1750 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Barker, S. C. et al. Characterization of pp60c-src tyrosine kinase activities using a continuous assay: autoactivation of the enzyme is an intermolecular autophosphorylation process. Biochemistry 34, 14843–14851 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Carducci, M. et al. The protein interaction network mediated by human SH3 domains. Biotechnol. Adv. 30, 4–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar, K. V., Modi, K. D. & Kalra, S. Mighty journals, mega trials, and modest points. Indian J. Endocrinol. Metab. 20, 578–579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Liang, Y.-L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Loudon, R. P. & Benovic, J. L. Expression, purification, and characterization of the G protein-coupled receptor kinase GRK6. J. Biol. Chem. 269, 22691–22697 (1994).

    CAS  PubMed  Google Scholar 

  56. Kim, T. H. et al. The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J. Am. Chem. Soc. 135, 9465–9474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H. et al. Crystal structure and substrate specificity of PTPN12. Cell Rep. 15, 1345–1358 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Li, R. et al. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase. J. Neurochem. 128, 315–329 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Majkut, J. et al. Differential affinity of FLIP and procaspase 8 for FADD’s DED binding surfaces regulates DISC assembly. Nat. Commun. 5, 3350 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, Y., Rice, A. E, & Denu, J. M. Intramolecular dephosphorylation of ERK by MKP3. Biochemistry 42, 15197–15207 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.-S. Li for stimulating discussions and critical reading of the manuscript. We thank S.-S. Zang and X-H. Liu of the Core Facility of Protein Research, Institute of Biophysics, Chinese Academy of Sciences, for their help in the NMR data collection, analysis and valuable discussion. We thank J. Jia and S. Sun for their technical assistance in flow cytometry analysis. We thank X. Ding from the Laboratory of Proteomics, Core Facilities for Protein Science, at the Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS), for her help with the mass spectrometry analysis. We thank R.J. Lefkowitz (Duke University) for giving the constructs of Flag-β2AR, Flag-V2R, Flag-SSTR2, β-arrestin-1-YFP, GRK6-YFP and GRK2-YFP. We thank Z. Yang, Y.-S. He, X.-L. Fu and L. Chen for participating in the collection and analysis of this large sequence library of GPCRs. We thank an anonymous scientist who helped in design of the receptor–arrestin–SRC complex formation strategy and contributed significantly to this project. We acknowledge support from the National Key Basic Research Program of China (2015CB856203 to J.-Y.W.), the National Natural Science Foundation of China (81773704 and 31470789 to J.-P.S., 21325211 to J.-Y.W., 31700692 to P.X.), the Shandong Natural Science Fund for Distinguished Young Scholars (JQ201517 to J.-P.S.), the Fundamental Research Fund of Shandong University (2014JC029 to X.Y.), the National Science Fund for Distinguished Young Scholars (81525005 to F.Y.) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13028).

Author information

Authors and Affiliations

Authors

Contributions

J.-P.S. conceived the idea for allosteric regulatory mechanism of arrestin and its engagement with effectors. J.-Y.W. conceived all chemical biology experiments and synthesis route. J.-P.S. conceived that majority of GPCR members connect to SH3-domain-containing proteins through arrestins. J.-Y.W. brought up the idea for F2Y and KPN. J.-P.S, F. Yang and P.X. designed the key experiments to dissect the allosteric propagation pathways. J.-P.S., J.-Y.W. and X.Y. designed most of the experiments. F. Yang and K.R. collected and analyzed the 19F-NMR data. P.X., Q. Liu. and F. Yang purified β2AR and GRK6 proteins. P.X., C.-X.Q and F. Yang performed SRC kinase activity assays. Q. Liu Synthesized TA-bimane and performed fluorescence spectroscopy assays. Z.-X.L. performed BRET assays. F. Yang, C.-X.Q., C.L., R.-R.L., Y.-M.S. Z.-Y.Y and X.-Z.G. synthesized F2Y and purified F2Y incorporated β-arrestin 1 proteins. F. Yang, C.L. and Q.-T.H. purified GST-SRC-FL, GST-SH3-CPs and GST-clathrin proteins. F. Yang, P.X. C.-X.Q., Q.-T.H. and Q. Li. performed GST-pull down and CO-IP assays. F. Yang and Q.-T.H. performed circular dichroism assays. F. Yang, F. Yi and Q. Li performed Trypsin digestion and MS/MS assays. L.-Y.W., P.X., C.-X.Q., J.-Y.X. and D.-F.H., analyzed the SH3 binding motif (proline region) across GPCR family members. J.-P.S., J.-Y.W. and X.Y. supervised the overall project design and execution. J.-P.S. participated in data analysis and interpretation. J.-P.S. and J.-Y.W. wrote the manuscript. All of the authors have seen and commented on the manuscript.

Corresponding authors

Correspondence to Jin-peng Sun or Jiangyun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–39

Reporting Summary

Supplementary Note 1

Sequence information for the localization of the proline region in the intracellular region of GPCR members; Supplementary methods; Additional Supplemental Figure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xiao, P., Qu, Cx. et al. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol 14, 876–886 (2018). https://doi.org/10.1038/s41589-018-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0115-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing