Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3

Abstract

Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-α, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-α has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-α interacts with ZRANB3. This process suppresses ZRANB3’s function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-α is promoted by RNR-α hexamerization—induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU—which elicits rapid RNR-α nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional interaction of RNR-α with nuclear protein ZRANB3.
Fig. 2: Nuclear RNR-α suppresses DNA replication by eliciting loss of function of ZRANB3.
Fig. 3: dA-Mimetics drive partial RNR-α nuclear translocation that saturates rapidly, independent of cell cycle, DNA damage, RNR-reductase activity, or RNR-β/-p53β.
Fig. 4: RNR-α nuclear translocation is functionally linked to RNR-α6RD hexamerization driven by dATP and its mimetics.
Fig. 5: IRBIT regulates nucleus:cytosol levels of endogenous RNR-α through cytosol anchoring of RNR-α6RD hexamers.
Fig. 6: Schematic model illustrating the double-agent role discovered for the enzyme RNR.

Similar content being viewed by others

References

  1. O’Donnell, M., Langston, L. & Stillman, B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5, a010108 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Nordlund, P. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Aye, Y., Li, M., Long, M. J. & Weiss, R. S. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011–2021 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Aye, Y. & Stubbe, J. Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc. Natl. Acad. Sci. USA 108, 9815–9820 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fairman, J. W. et al. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat. Struct. Mol. Biol. 18, 316–322 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cooperman, B. S. & Kashlan, O. B. A comprehensive model for the allosteric regulation of Class Ia ribonucleotide reductases. Adv. Enzyme Regul. 43, 167–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hofer, A., Crona, M., Logan, D. T. & Sjöberg, B. M. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47, 50–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Aye, Y. et al. Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem. Biol. 19, 799–805 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fu, Y., Lin, H., Wisitpitthaya, S., Blessing, W. A. & Aye, Y. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization. ChemBioChem 15, 2598–2604 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wisitpitthaya, S. et al. Cladribine and fludarabine nucleotides induce distinct hexamers defining a common mode of reversible rnr inhibition. ACS Chem. Biol. 11, 2021–2032 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ando, N. et al. Allosteric inhibition of human ribonucleotide reductase by datp entails the stabilization of a hexamer. Biochemistry 55, 373–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Brignole, E. J. et al. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. eLife 7, e31502 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Rofougaran, R., Vodnala, M. & Hofer, A. Enzymatically active mammalian ribonucleotide reductase exists primarily as an alpha6beta2 octamer. J. Biol. Chem. 281, 27705–27711 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Engström, Y. & Rozell, B. Immunocytochemical evidence for the cytoplasmic localization and differential expression during the cell cycle of the M1 and M2 subunits of mammalian ribonucleotide reductase. EMBO J. 7, 1615–1620 (1988).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pontarin, G. et al. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc. Natl. Acad. Sci. USA 105, 17801–17806 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fong, K. M., Zimmerman, P. V. & Smith, P. J. Correlation of loss of heterozygosity at 11p with tumour progression and survival in non-small cell lung cancer. Genes Chromosom. Cancer 10, 183–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Q. et al. Ribonucleotide reductase large subunit M1 predicts poor survival due to modulation of proliferative and invasive ability of gastric cancer. PLoS One 8, e70191 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee, J. J. et al. The immunohistochemical overexpression of ribonucleotide reductase regulatory subunit M1 (RRM1) protein is a predictor of shorter survival to gemcitabine-based chemotherapy in advanced non-small cell lung cancer (NSCLC). Lung Cancer 70, 205–210 (2010).

    Article  PubMed  Google Scholar 

  19. Mathews, C. K. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat. Rev. Cancer 15, 528–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Ali, I. U., Lidereau, R., Theillet, C. & Callahan, R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238, 185–188 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Cao, M. Y. et al. Adenovirus-mediated ribonucleotide reductase R1 gene therapy of human colon adenocarcinoma. Clin. Cancer Res. 9, 4553–4561 (2003).

    CAS  PubMed  Google Scholar 

  22. Fan, H., Huang, A., Villegas, C. & Wright, J. A. The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc. Natl. Acad. Sci. USA 94, 13181–13186 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bepler, G. et al. RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer. J. Clin. Oncol. 22, 1878–1885 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Gautam, A. & Bepler, G. Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res. 66, 6497–6502 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gautam, A., Li, Z. R. & Bepler, G. RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 22, 2135–2142 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Pitterle, D. M. et al. Lung cancer and the human gene for ribonucleotide reductase subunit M1 (RRM1). Mamm. Genome 10, 916–922 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Z. et al. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med. 356, 800–808 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Qi, H. et al. Non-enzymatic action of RRM1 protein upregulates PTEN leading to inhibition of colorectal cancer metastasis. Tumour Biol. 36, 4833–4842 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ciccia, A. et al. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol. Cell 47, 396–409 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Weston, R., Peeters, H. & Ahel, D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev. 26, 1558–1572 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yuan, J., Ghosal, G. & Chen, J. The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol. Cell 47, 410–421 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stubbe, J. & van Der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Andersen, P. L., Xu, F. & Xiao, W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 18, 162–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Sirbu, B. M., Couch, F. B. & Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594–605 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Gratzner, H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218, 474–475 (1982).

    Article  CAS  PubMed  Google Scholar 

  37. Gilljam, K. M. et al. Identification of a novel, widespread, and functionally important PCNA-binding motif. J. Cell Biol. 186, 645–654 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Su Lim, C. et al. Measurement of the nucleus area and nucleus/cytoplasm and mitochondria/nucleus ratios in human colon tissues by dual-colour two-photon microscopy imaging. Sci. Rep. 5, 18521 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Specks, J., Lecona, E., Lopez-Contreras, A. J. & Fernandez-Capetillo, O. A single conserved residue mediates binding of the ribonucleotide reductase catalytic subunit rrm1 to rrm2 and is essential for mouse development. Mol. Cell. Biol. 35, 2910–2917 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Aye, Y., Long, M. J. & Stubbe, J. Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J. Biol. Chem. 287, 35768–35778 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ewald, B., Sampath, D. & Plunkett, W. Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27, 6522–6537 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Niida, H. et al. Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev. 24, 333–338 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tsao, N., Yang, Y. C., Deng, Y. J. & Chang, Z. F. The direct interaction of NME3 with Tip60 in DNA repair. Biochem. J. 473, 1237–1245 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Bianchi, V., Pontis, E. & Reichard, P. Dynamics of the dATP pool in cultured mammalian cells. Exp. Cell Res. 199, 120–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Arnaoutov, A. & Dasso, M. Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes. Science 345, 1512–1515 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vujanovic, M. et al. Replication fork slowing and reversal upon DNA damage require pcna polyubiquitination and zranb3 DNA translocase activity. Mol. Cell 67, 882–890.e5 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fu, Y. et al. Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase. Biochemistry 52, 7050–7059 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, D., Viberg, J., Nilsson, A. K. & Chabes, A. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res. 38, 3975–3983 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pai, C. C. & Kearsey, S. E. A critical balance: Dntps and the maintenance of genome stability. Genes (Basel) 8, 57 (2017).

    Article  CAS  Google Scholar 

  50. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Kocsis, E., Cerritelli, M. E., Trus, B. L., Cheng, N. & Steven, A. C. Improved methods for determination of rotational symmetries in macromolecules. Ultramicroscopy 60, 219–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Marabini, R. et al. Xmipp: An image processing package for electron microscopy. J. Struct. Biol. 116, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Scheres, S. H. et al. Maximum-likelihood multi-reference refinement for electron microscopy images. J. Mol. Biol. 348, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Seluanov, A., Mittelman, D., Pereira-Smith, O. M., Wilson, J. H. & Gorbunova, V. DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc. Natl. Acad. Sci. USA 101, 7624–7629 (2004).

    Article  CAS  Google Scholar 

  57. Ferraro, P. et al. Mitochondrial deoxynucleotide pools in quiescent fibroblasts: a possible model for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). J. Biol. Chem. 280, 24472–24480 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to members of the individual labs who generously provided plasmids and shRNAs as indicated in on-line methods; J. Page for contributing to the creation of RNR-α(D57N) knock-in mice; A. Arnaoutov (Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH) for pfastbac-GST-IRBIT; V. Gorbunova (University of Rochester) for NHEJ-reporter plasmids; J. Yuan (Columbia University) for the plasmids SFB-ZRANB3, SFB-ZRANB3-Δ PIP and SFBZRANB3(Q519A); D. Ahel (Oxford University) for the plasmids YFP-ZRANB3 and Flag-ZRANB3; Z. Zhang (University of Delaware) for the plasmid pet15b-His5-PCNA; A. Grimson (Cornell University) for the shRNA plasmids for RNR-α, RNR-β and IRBIT. Research: Pershing Square Sohn Cancer Research Alliance grant (to Y.A.); Meyer Cancer Center grant (Weill Cornell Medicine) (to Y.A. and R.S.W.); and the Canadian Institutes of Health Research grant (MOP-82930) (to J.O.). Instrumentation and shared supplies: NIH DP2 New Innovator (1DP2GM114850); NSF CAREER (CHE-1351400); Office of Naval Research (ONR) Young Investigator (N00014-17-1-2529); Beckman Young Investigator; Sloan Fellowship (FG-2016-6379) (to Y.A.); Cornell NMR facility (NSF MRI: CHE-1531632; PI: Y.A.) and Cornell Imaging Center (NIH 1S10RR025502; PI: R.M. Williams).

Author information

Authors and Affiliations

Authors

Contributions

Y.F., M.J.C.L. and Y.A. designed the experiments. Y.F. and M.J.C.L. performed the experiments. S.W. synthesized ClF, CLA and FLU nucleotides. H.I. and J.O. performed electron microscopy analysis. I.M.E. assisted M.J.C.L. with targeted mutagenesis for binding-site analysis. M.J.C.L., T.M.P., J.C.B. and R.S.W. generated mouse embryonic fibroblast cultures. Y.F., M.J.C.L. and Y.A. analyzed and interpreted the data. Y.F., M.J.C.L. and Y.A. wrote the paper with proof-editing contributions from R.S.W. and J.O.

Corresponding author

Correspondence to Yimon Aye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Text and Figures

Supplementary Table 1–2, Supplementary Figures 1–42

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Long, M.J.C., Wisitpitthaya, S. et al. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat Chem Biol 14, 943–954 (2018). https://doi.org/10.1038/s41589-018-0113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0113-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer