Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells

This article has been updated

Abstract

Primordial germ cells (PGCs) form during early embryogenesis with a supply of maternal mRNAs that contain shorter poly(A) tails. How translation of maternal mRNAs is regulated during PGC development remains elusive. Here we describe a small-molecule screen with zebrafish embryos that identified primordazine, a compound that selectively ablates PGCs. Primordazine’s effect on PGCs arises from translation repression through primordazine-response elements in the 3′ UTRs. Systematic dissection of primordazine’s mechanism of action revealed that translation of mRNAs during early embryogenesis occurs by two distinct pathways, depending on the length of their poly(A) tails. In addition to poly(A)-tail-dependent translation (PAT), early embryos perform poly(A)-tail-independent noncanonical translation (PAINT) via deadenylated 3′ UTRs. Primordazine inhibits PAINT without inhibiting PAT, an effect that was also observed in quiescent, but not proliferating, mammalian cells. These studies reveal that PAINT is an alternative form of translation in the early embryo and is indispensable for PGC maintenance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of small molecules, primordazine A and B, that ablate PGCs.
Fig. 2: Primordazine inhibits translation via the 3′ UTR of nanos3 or dnd1.
Fig. 3: Primordazine inhibits Poly(A)-tail-independent noncanonical translation (PAINT) without inhibiting canonical, poly(A)-tail-mediated translation (PAT).
Fig. 4: Primordazine inhibits translation of a subgroup of endogenous genes.
Fig. 5: Primordazine induces the formation of abnormal RNA granules.
Fig. 6: Primordazine inhibits PAINT in quiescent-like but not in proliferating cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study including RNA-seq and proteomics analysis are available from the corresponding authors upon reasonable request.

Change history

  • 26 July 2019

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.

References

  1. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    Article  CAS  Google Scholar 

  2. Strome, S. & Updike, D. Specifying and protecting germ cell fate. Nat. Rev. Mol. Cell Biol. 16, 406–416 (2015).

    Article  CAS  Google Scholar 

  3. Cai, H. et al. In vitro and in vivo differentiation of induced pluripotent stem cells into male germ cells. Biochem. Biophys. Res. Commun. 433, 286–291 (2013).

    Article  CAS  Google Scholar 

  4. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    Article  CAS  Google Scholar 

  5. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).

    Article  CAS  Google Scholar 

  6. Hayashi, K. et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971–975 (2012).

    Article  CAS  Google Scholar 

  7. Park, T. S. et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 27, 783–795 (2009).

    Article  CAS  Google Scholar 

  8. Raz, E. Primordial germ-cell development: the zebrafish perspective. Nat. Rev. Genet. 4, 690–700 (2003).

    Article  CAS  Google Scholar 

  9. Paksa, A. & Raz, E. Zebrafish germ cells: motility and guided migration. Curr. Opin. Cell Biol. 36, 80–85 (2015).

    Article  CAS  Google Scholar 

  10. Winata, C. L. et al. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 145, dev159566 (2018).

    Article  Google Scholar 

  11. Krøvel, A. V. & Olsen, L. C. Expression of a vas:EGFP transgene in primordial germ cells of the zebrafish. Mech. Dev. 116, 141–150 (2002).

    Article  Google Scholar 

  12. Yoon, C., Kawakami, K. & Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165 (1997).

    CAS  PubMed  Google Scholar 

  13. Köprunner, M., Thisse, C., Thisse, B. & Raz, E. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877–2885 (2001).

    PubMed  PubMed Central  Google Scholar 

  14. Weidinger, G. et al. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 13, 1429–1434 (2003).

    Article  CAS  Google Scholar 

  15. Dai, X., Jin, X., Chen, X., He, J. & Yin, Z. Sufficient numbers of early germ cells are essential for female sex development in zebrafish. PLoS One 10, e0117824 (2015).

    Article  Google Scholar 

  16. Tzung, K.-W. et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep. 4, 61–73 (2015).

    Article  CAS  Google Scholar 

  17. Siegfried, K. R. & Nüsslein-Volhard, C. Germ line control of female sex determination in zebrafish. Dev. Biol. 324, 277–287 (2008).

    Article  CAS  Google Scholar 

  18. Slanchev, K., Stebler, J., de la Cueva-Méndez, G. & Raz, E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc. Natl. Acad. Sci. USA 102, 4074–4079 (2005).

    Article  CAS  Google Scholar 

  19. Schulte-Merker, S. et al. Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843–852 (1994).

    CAS  PubMed  Google Scholar 

  20. Schulte-Merker, S., van Eeden, F. J., Halpern, M. E., Kimmel, C. B. & Nüsslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  21. Majumdar, A., Lun, K., Brand, M. & Drummond, I. A. Zebrafish no isthmus reveals a role forpax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127, 2089–2098 (2000).

    CAS  PubMed  Google Scholar 

  22. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  23. Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    Article  CAS  Google Scholar 

  24. Choudhuri, A., Maitra, U. & Evans, T. Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc. Natl. Acad. Sci. USA 110, 9818–9823 (2013).

    Article  CAS  Google Scholar 

  25. Tischer, T., Hörmanseder, E. & Mayer, T. U. The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 338, 520–524 (2012).

    Article  CAS  Google Scholar 

  26. Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  Google Scholar 

  27. Matoulkova, E., Michalova, E., Vojtesek, B. & Hrstka, R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9, 563–576 (2012).

    Article  CAS  Google Scholar 

  28. Hinnebusch, A. G., Ivanov, I. P. & Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352, 1413–1416 (2016).

    Article  CAS  Google Scholar 

  29. Meijer, H. A. et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340, 82–85 (2013).

    Article  CAS  Google Scholar 

  30. Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    Article  CAS  Google Scholar 

  31. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).

    Article  CAS  Google Scholar 

  32. Mamane, Y., Petroulakis, E., LeBacquer, O. & Sonenberg, N. mTOR, translation initiation and cancer. Oncogene 25, 6416–6422 (2006).

    Article  CAS  Google Scholar 

  33. Liu, Q. et al. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473–1480 (2011).

    Article  CAS  Google Scholar 

  34. Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  Google Scholar 

  35. Tryon, R. C., Pisat, N., Johnson, S. L. & Dougherty, J. D. Development of translating ribosome affinity purification for zebrafish. genesis 51, 187–192 (2013).

    Article  CAS  Google Scholar 

  36. Kedersha, N., Ivanov, P. & Anderson, P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci. 38, 494–506 (2013).

    Article  CAS  Google Scholar 

  37. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  Google Scholar 

  38. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  Google Scholar 

  39. Strasser, M. J. et al. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development. BMC Dev. Biol. 8, 58 (2008).

    Article  Google Scholar 

  40. Valcourt, J. R. et al. Staying alive: metabolic adaptations to quiescence. Cell Cycle 11, 1680–1696 (2012).

    Article  CAS  Google Scholar 

  41. McKnight, J. N., Boerma, J. W., Breeden, L. L. & Tsukiyama, T. Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol. Cell 59, 732–743 (2015).

    Article  CAS  Google Scholar 

  42. Chen, J. et al. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25, 755–766 (2011).

    Article  CAS  Google Scholar 

  43. Belloc, E. & Méndez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008).

    Article  CAS  Google Scholar 

  44. Pasternak, M., Pfender, S., Santhanam, B. & Schuh, M. The BTG4 and CAF1 complex prevents the spontaneous activation of eggs by deadenylating maternal mRNAs. Open Biol. 6, 160184 (2016).

    Article  Google Scholar 

  45. Ivshina, M., Lasko, P. & Richter, J. D. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu. Rev. Cell Dev. Biol. 30, 393–415 (2014).

    Article  CAS  Google Scholar 

  46. Siddiqui, N. U. et al. Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells. Genome Biol. 13, R11 (2012).

    Article  CAS  Google Scholar 

  47. Wu, H. et al. N-terminal domain of feline calicivirus (FCV) proteinase-polymerase contributes to the inhibition of host cell transcription. Viruses 8, 199 (2016).

    Article  Google Scholar 

  48. Andreev, D. E. et al. Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression. eLife 4, e03971 (2015).

    Article  Google Scholar 

  49. Baird, T. D. et al. Selective mRNA translation during eIF2 phosphorylation induces expression of IBTKα. Mol. Biol. Cell 25, 1686–1697 (2014).

    Article  Google Scholar 

  50. Richter, J. D. & Coller, J. Pausing on polyribosomes: make way for elongation in translational control. Cell 163, 292–300 (2015).

    Article  CAS  Google Scholar 

  51. Schlueter, P. J., Sang, X., Duan, C. & Wood, A. W. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev. Biol. 305, 377–387 (2007).

    Article  CAS  Google Scholar 

  52. Kramer, M. C. et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 29, 2168–2182 (2015).

    Article  CAS  Google Scholar 

  53. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  Google Scholar 

  54. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    Article  CAS  Google Scholar 

  55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  56. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  57. Link, V., Shevchenko, A. & Heisenberg, C.-P. Proteomics of early zebrafish embryos. BMC Dev. Biol. 6, 1 (2006).

    Article  Google Scholar 

  58. Yoshigi, M., Pronovost, S. M. & Kadrmas, J. L. Interactions by 2D Gel Electrophoresis Overlap (iGEO): a novel high fidelity approach to identify constituents of protein complexes. Proteome Sci. 11, 21 (2013).

    Article  CAS  Google Scholar 

  59. Sorrells, S., Toruno, C., Stewart, R. A. & Jette, C. Analysis of apoptosis in zebrafish embryos by whole-mount immunofluorescence to detect activated caspase 3. J. Vis. Exp. 2013, e51060 (2013).

    Google Scholar 

  60. van Ham, T. J., Mapes, J., Kokel, D. & Peterson, R. T. Live imaging of apoptotic cells in zebrafish. FASEB J. 24, 4336–4342 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Vasudevan, T. Shioda, S. Lee, N. Dyson, W. Miles, and Y. Yu for discussions related to this manuscript. Thanks to K. Inoue (Kobe University, Japan), E. Raz (University of Münster, Germany), M. Bushell (MedicalResearch Council, UK), and J. Wilusz (University of Pennsylvania, USA) for providing plasmids. Thanks to U. Kim (next generation sequencing core at Massachusetts General Hospital) for help with the RNA-seq process, to A. Gonzales and D. Harrison for technical assistance, and to C. Reilly for chemical validation. Funding was provided by NIH grants 5T32HL007208-37 (Y.N.J.), R01GM088040 (R.T.P.), USDA grant 2014-07998 (R.T.P.), the Charles and Ann Sanders MGH Scholar Award (R.T.P.), and the L. S. Skaggs Presidential Endowed Chair (R.T.P.).

Author information

Authors and Affiliations

Authors

Contributions

Y.N.J., P.J.S., N.J.-Y., and R.T.P. designed the study and experiments. Y.N.J., P.J.S., N.J.-Y., and P.-Y.L. performed the experiments. Y.N.J. and P.J.S. performed data analysis. P.-Y.L. and Y.N.J. performed RNA-seq. Y.N.J. performed bioinformatics. S.J. synthesized chemicals. W.Y.H. and J.-R.J.Y. generated knockout fish. M.Y., S.-E.O., M.S., C.R.H., and S.A.C. contributed to 2D gel electrophoresis and proteomic analysis. Y.N.J. and R.T.P. wrote the paper. All authors commented on the manuscript.

Corresponding authors

Correspondence to Youngnam N. Jin or Randall T. Peterson.

Ethics declarations

Competing interests

P.J.S. and R.T.P. have applied for a patent for primordazine.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19, Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y.N., Schlueter, P.J., Jurisch-Yaksi, N. et al. Noncanonical translation via deadenylated 3′ UTRs maintains primordial germ cells. Nat Chem Biol 14, 844–852 (2018). https://doi.org/10.1038/s41589-018-0098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0098-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing