Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Acetylation blocks DNA damage–induced chromatin ADP-ribosylation

Abstract

Recent studies report serine ADP-ribosylation on nucleosomes during the DNA damage response. We unveil histone H3 serine 10 as the primary acceptor residue for chromatin ADP-ribosylation and find that specific histone acetylation marks block this activity. Our results provide a molecular explanation for the well-documented phenomenon of rapid deacetylation at DNA damage sites and support the combinatorial application of PARP and HDAC inhibitors for the treatment of PARP-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA-damage-induced H3S10 ADP-ribosylation is blocked by H3K9 acetylation.
Fig. 2: Acetylation of PARP1 regulates its auto- and trans-ADP-ribosylation activities.

Similar content being viewed by others

References

  1. Ray Chaudhuri, A. & Nussenzweig, A. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daniels, C. M., Ong, S. E. & Leung, A. K. Mol. Cell 58, 911–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ogata, N., Ueda, K., Kawaichi, M. & Hayaishi, O. J. Biol. Chem. 256, 4135–4137 (1981).

    CAS  Google Scholar 

  4. Messner, S. & Hottiger, M. O. Trends Cell Biol. 21, 534–542 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Bonfiglio, J. J. et al. Mol. Cell 65, 932–940.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. Mol. Cell 62, 432–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krishnakumar, R. & Kraus, W. L. Mol. Cell 39, 8–24 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amé, J. C. et al. J. Biol. Chem. 274, 17860–17868 (1999).

    Article  PubMed  Google Scholar 

  9. Pommier, Y., O’Connor, M. J. & de Bono, J. Sci. Transl. Med. 8, 362ps17 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Jenuwein, T. & Allis, C. D. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Palazzo, L. et al. eLife 7, e34334 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leidecker, O. et al. Nat. Chem. Biol. 12, 998–1000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fontana, P. et al. eLife 6, e28533 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polo, S. E. & Jackson, S. P. Genes Dev. 25, 409–433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dann, G. P. et al. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M. Y., Mauro, S., Gévry, N., Lis, J. T. & Kraus, W. L. Cell 119, 803–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Mao, Z. et al. Science 332, 1443–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller, K. M. et al. Nat. Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tjeertes, J. V., Miller, K. M. & Jackson, S. P. EMBO J. 28, 1878–1889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michishita, E. et al. Nature 452, 492–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martello, R. et al. Nat. Commun. 7, 12917 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hassa, P. O. et al. J. Biol. Chem. 280, 40450–40464 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Muthurajan, U. M. et al. Proc. Natl. Acad. Sci. USA 111, 12752–12757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Min, A. et al. Breast Cancer Res. 17, 33 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ha, K. et al. Oncotarget 5, 5637–5650 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nguyen, U. T. et al. Nat. Methods 11, 834–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Gil, R., Barth, S., Kanfi, Y. & Cohen, H. Y. Nucleic Acids Res. 41, 8537–8545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, W. W., Zeng, Y., Wu, B., Deiters, A. & Liu, W. R. ACS Chem. Biol. 11, 1973–1981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank current members of the Muir laboratory as well as C.D. Allis for discussions and comments. We also thank the Princeton University Sequencing Core Facility and C. Arrowsmith (University of Toronto) for the SIRT6 expression plasmid. This work was supported by National Institutes of Health (NIH) Grants R37 GM086868, R01 GM107047 and P01 CA196539. G.P.L. and K.L.D. were supported by NIH Research Service Awards (1F32GM110880 and 5F32CA206418, respectively).

Author information

Authors and Affiliations

Authors

Contributions

G.L. and K.L.D. performed all experiments. G.P.D. assisted with DNA barcode sorting following high-throughput DNA sequencing. G.L., K.L.D., and T.W.M. analyzed all data and wrote the manuscript.

Corresponding author

Correspondence to Tom W. Muir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–26

Reporting Summary

Supplementary Dataset 1

Mononucleosome library binding and ADP-ribosylation activity measurements for PARP1–HPF1 and PARP2–HPF1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liszczak, G., Diehl, K.L., Dann, G.P. et al. Acetylation blocks DNA damage–induced chromatin ADP-ribosylation. Nat Chem Biol 14, 837–840 (2018). https://doi.org/10.1038/s41589-018-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0097-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing