Abstract
Designer microbial consortia are an emerging frontier in synthetic biology that enable versatile microbiome engineering. However, the utilization of such consortia is hindered by our limited capacity in rapidly creating ecosystems with desired dynamics. Here we present the development of synthetic communities through social interaction engineering that combines modular pathway reconfiguration with model creation. Specifically, we created six two-strain consortia, each possessing a unique mode of interaction, including commensalism, amensalism, neutralism, cooperation, competition and predation. These consortia follow distinct population dynamics with characteristics determined by the underlying interaction modes. We showed that models derived from two-strain consortia can be used to design three- and four-strain ecosystems with predictable behaviors and further extended to provide insights into community dynamics in space. This work sheds light on the organization of interacting microbial species and provides a systematic framework—social interaction programming—to guide the development of synthetic ecosystems for diverse purposes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Addressable and adaptable intercellular communication via DNA messaging
Nature Communications Open Access 24 April 2023
-
Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production
Nature Communications Open Access 07 November 2022
-
Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback
Nature Communications Open Access 16 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).
Großkopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).
De Roy, K., Marzorati, M., Van den Abbeele, P., Van de Wiele, T. & Boon, N. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ. Microbiol. 16, 1472–1481 (2014).
Bittihn, P., Din, M. O., Tsimring, L. S. & Hasty, J. Rational engineering of synthetic microbial systems: from single cells to consortia. Curr. Opin. Microbiol. 45, 92–99 (2018).
Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).
Balagaddé, F. K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).
Chen, Y., Kim, J. K., Hirning, A. J., Josić, K. & Bennett, M. R. Emergent genetic oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015).
Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).
Chuang, J. S., Rivoire, O. & Leibler, S. Simpson’s paradox in a synthetic microbial system. Science 323, 272–275 (2009).
Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).
Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
Minty, J. J. et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl Acad. Sci. USA 110, 14592–14597 (2013).
Hood, L. Tackling the microbiome. Science 336, 1209 (2012).
Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).
Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl Acad. Sci. USA 104, 17300–17304 (2007).
Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).
Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).
Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006.0028 (2006).
Arkin, A. Setting the standard in synthetic biology. Nat. Biotechnol. 26, 771–774 (2008).
Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).
Collins, J. J. et al. Synthetic biology: how best to build a cell. Nature 509, 155–157 (2014).
Purnick, P. E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).
Lubelski, J., Rink, R., Khusainov, R., Moll, G. N. & Kuipers, O. P. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell. Mol. Life Sci. 65, 455–476 (2008).
Stoddard, G. W., Petzel, J. P., van Belkum, M. J., Kok, J. & McKay, L. L. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol. 58, 1952–1961 (1992).
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).
Foster, K. R. in Social Behaviour: Genes, Ecology and Evolution 331–356 (Cambridge Univ. Press, Cambridge, UK, 2010).
Xavier, J. B. Social interaction in synthetic and natural microbial communities. Mol. Syst. Biol. 7, 483 (2011).
Kong, W., Kapuganti, V. S. & Lu, T. A gene network engineering platform for lactic acid bacteria. Nucleic Acids Res. 44, e37 (2016).
Kong, W. & Lu, T. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth. Biol. 3, 439–445 (2014).
Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3, 3–51 (1928).
Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
Le Loir, Y., Gruss, A., Ehrlich, S. D. & Langella, P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180, 1895–1903 (1998).
Oh, J.-H. & van Pijkeren, J.-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).
Douglas, G. L. & Klaenhammer, T. R. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 77, 7365–7371 (2011).
Fernández, A., Horn, N., Gasson, M. J., Dodd, H. M. & Rodríguez, J. M. High-level coproduction of the bacteriocins nisin A and lactococcin A by Lactococcus lactis. J. Dairy Res. 71, 216–221 (2004).
Acknowledgements
We thank M. Sivaguru, G. Fried and A. Cyphersmith for their help with colony imaging at the IGB Core Facilities at UIUC, and B. Pilas of the Roy J. Carver Biotechnology Center at UIUC for assistance with flow cytometry analysis in this study. We also thank H. Liu, W. van der Donk, X. Yang and A. Blanchard for stimulating discussions and help. This work was supported by the National Science Foundation (1553649, 1227034), the Office of Naval Research (N000141612525), the American Heart Association (12SDG12090025), the Center for Advanced Study at UIUC, National Center for Supercomputing Applications, the Paul G. Allen Frontiers Group, and the Defense Threat Reduction Agency (HDTRA1-14-1-0006).
Author information
Authors and Affiliations
Contributions
T.L. and J.J.C. designed the study; T.L. conceived the project; W.K. performed the experiments and collected the data; D.R.M. developed the computational models; W.K., D.R.M. and T.L. analyzed the data; T.L., J.J.C., W.K. and D.R.M. discussed the results and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Text and Figures
Supplementary Table 1–7, Supplementary Figures 1–12, Supplementary Notes 1–4
Rights and permissions
About this article
Cite this article
Kong, W., Meldgin, D.R., Collins, J.J. et al. Designing microbial consortia with defined social interactions. Nat Chem Biol 14, 821–829 (2018). https://doi.org/10.1038/s41589-018-0091-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41589-018-0091-7
This article is cited by
-
Addressable and adaptable intercellular communication via DNA messaging
Nature Communications (2023)
-
De novo engineering of a bacterial lifestyle program
Nature Chemical Biology (2023)
-
Engineering the Future through Synthetic Biology
Biotechnology and Bioprocess Engineering (2023)
-
Biodegradation of Neonicotinoids: Current Trends and Future Prospects
Current Pollution Reports (2023)
-
Occurrence, Degradation Pathways, and Potential Synergistic Degradation Mechanism of Microplastics in Surface Water: A Review
Current Pollution Reports (2023)