Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Potent and specific Atg8-targeting autophagy inhibitory peptides from giant ankyrins

Abstract

The mammalian Atg8 family proteins are central drivers of autophagy and contain six members, classified into the LC3 and GABARAP subfamilies. Due to their high sequence similarity and consequent functional overlaps, it is difficult to delineate specific functions of Atg8 proteins in autophagy. Here we discover a super-strong GABARAP-selective inhibitory peptide harbored in 270/480 kDa ankyrin-G and a super-potent pan-Atg8 inhibitory peptide from 440 kDa ankyrin-B. Structural studies elucidate the mechanism governing the Atg8 binding potency and selectivity of the peptides, reveal a general Atg8-binding sequence motif, and allow development of a more GABARAP-selective inhibitory peptide. These peptides effectively blocked autophagy when expressed in cultured cells. Expression of these ankyrin-derived peptides in Caenorhabditis elegans also inhibited autophagy, causing accumulation of the p62 homolog SQST-1, delayed development and shortened life span. Thus, these genetically encodable autophagy inhibitory peptides can be used to occlude autophagy spatiotemporally in living animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The super-strong affinity of selective AnkG-LIR binding to GABARAPs and its structural basis.
Fig. 2: AnkB-LIR binds to all Atg8 family members with super-strong affinities.
Fig. 3: Structures of AnkB-LIR in complex with GABARAP and LC3B reveal a consensus sequence motif for the extended LIRs with strong binding to Atg8s.
Fig. 4: Autophagy inhibition by AnkB/G-LIR peptides in COS7 cells.
Fig. 5: Expression of the AnkB peptide impairs autophagy in C. elegans.
Fig. 6: The AnkB peptide inhibits autophagy in a tissue- and time-specific manner.

Similar content being viewed by others

References

  1. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    PubMed  Google Scholar 

  2. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

    CAS  PubMed  Google Scholar 

  3. Bento, C. F. et al. Mammalian autophagy: how does it work? Annu. Rev. Biochem. 85, 685–713 (2016).

    CAS  PubMed  Google Scholar 

  4. Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    CAS  PubMed  Google Scholar 

  6. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 651–662 (2013).

    CAS  PubMed  Google Scholar 

  7. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    CAS  PubMed  Google Scholar 

  10. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    CAS  PubMed  Google Scholar 

  11. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    CAS  PubMed  Google Scholar 

  12. Meléndez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    PubMed  Google Scholar 

  13. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211–216 (2001).

    CAS  PubMed  Google Scholar 

  14. Tian, Y. et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042–1055 (2010).

    CAS  PubMed  Google Scholar 

  15. Shpilka, T., Weidberg, H., Pietrokovski, S. & Elazar, Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12, 226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wild, P., McEwan, D. G. & Dikic, I. The LC3 interactome at a glance. J. Cell Sci. 127, 3–9 (2014).

    CAS  PubMed  Google Scholar 

  17. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    CAS  PubMed  Google Scholar 

  18. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    CAS  PubMed  Google Scholar 

  19. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29, 1792–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, F. et al. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell 60, 914–929 (2015).

    CAS  PubMed  Google Scholar 

  22. Kraft, C. et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31, 3691–3703 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McEwan, D. G. et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    CAS  PubMed  Google Scholar 

  24. Wang, Z. et al. The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol. Cell 63, 781–795 (2016).

    CAS  PubMed  Google Scholar 

  25. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    PubMed  PubMed Central  Google Scholar 

  26. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    CAS  PubMed  Google Scholar 

  27. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy, 3rd edition. Autophagy 12, 1–222 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Manil-Ségalen, M. et al. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev. Cell 28, 43–55 (2014).

    PubMed  Google Scholar 

  30. Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    CAS  PubMed  Google Scholar 

  31. Birgisdottir, A. B., Lamark, T. & Johansen, T. The LIR motif — crucial for selective autophagy. J. Cell Sci. 126, 3237–3247 (2013).

    CAS  PubMed  Google Scholar 

  32. Lee, Y. K. et al. Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy. EMBO J. 36, 1100–1116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stolz, A. et al. Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. EMBO J. 36, 549–564 (2017).

    CAS  PubMed  Google Scholar 

  34. Kordeli, E., Lambert, S. & Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270, 2352–2359 (1995).

    CAS  PubMed  Google Scholar 

  35. Jenkins, P. M. et al. Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc. Natl Acad. Sci. USA 112, 957–964 (2015).

    CAS  PubMed  Google Scholar 

  36. Tseng, W. C., Jenkins, P. M., Tanaka, M., Mooney, R. & Bennett, V. Giant ankyrin-G stabilizes somatodendritic GABAergic synapses through opposing endocytosis of GABAA receptors. Proc. Natl Acad. Sci. USA 112, 1214–1219 (2015).

    CAS  PubMed  Google Scholar 

  37. Chan, W., Kordeli, E. & Bennett, V. 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. J. Cell Biol. 123, 1463–1473 (1993).

    CAS  PubMed  Google Scholar 

  38. Olsvik, H. L. et al. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J. Biol. Chem. 290, 29361–29374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, X. et al. Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins. Autophagy 12, 1330–1339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Maruyama, Y. et al. LC3B is indispensable for selective autophagy of p62 but not basal autophagy. Biochem. Biophys. Res. Commun. 446, 309–315 (2014).

    CAS  PubMed  Google Scholar 

  41. Zhang, H. et al. Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11, 9–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kunimoto, M. A neuron-specific isoform of brain ankyrin, 440-kD ankyrinB, is targeted to the axons of rat cerebellar neurons. J. Cell Biol. 131, 1821–1829 (1995).

    CAS  PubMed  Google Scholar 

  43. Galiano, M. R. et al. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149, 1125–1139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu, M. M., Nirschl, J. J. & Holzbaur, E. L. F. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev. Cell 29, 577–590 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  46. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, (213–221 (2010).

    Google Scholar 

  49. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the BL19U1 beamline at National Facility for Protein Science Shanghai (NFPS) and BL17U1 beamline at Shanghai Synchrotron Radiation Facility (SSRF) for X-ray beam time, and staff at the BioCRF of HKUST for assistance in MALDI-TOF analysis. The GFP-LC3-expressing HeLa stable cell line was a kind gift from Yingyu Chen, Peking University School of Basic Medical Sciences. This work was supported by National Key R&D Program of China (2016YFA0501903) and a 973 program grant (2014CB910204) from the Minister of Science and Technology of China to M.Z., grants from RGC of Hong Kong (664113, 16103614, 16100517 and AoE-M09-12) to M.Z., and grants from the National Natural Science Foundation of China (NSFC) (31421002, 31630048, 31561143001 to H.Z. and 31670734 to C.W.). C.W. is supported by CAS Pioneer Hundred Talents Program. M.Z. is a Kerry Holdings Professor in Science and a Senior Fellow of IAS at HKUST.

Author information

Authors and Affiliations

Authors

Contributions

J.L., R.Z., C.W. and K.C. performed structural and biochemical experiments; H. Zheng, H. Zhao and C.Y. performed worm experiments; R.Z. performed COS7 cell experiments; J.L., C.W., H. Zhang and M.Z. wrote the paper, and all authors approved the manuscript; H. Zhang and M.Z. supervised the research; M.Z. coordinated the project.

Corresponding authors

Correspondence to Hong Zhang, Chao Wang or Mingjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1–5 and Supplementary Figures 1–13

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, R., Chen, K. et al. Potent and specific Atg8-targeting autophagy inhibitory peptides from giant ankyrins. Nat Chem Biol 14, 778–787 (2018). https://doi.org/10.1038/s41589-018-0082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0082-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing