Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes

This article has been updated

Abstract

Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochrome P450s from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the β-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sarpagan bridge enzyme candidate screening using combinatorial expression in N. benthamiana.
Fig. 2: The cyclization and aromatization catalytic function of recombinant RsSBE, GsSBE and CrAS depend on the substrate.

Change history

  • 26 July 2019

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.

References

  1. O’Connor, S. E. & Maresh, J. J. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  Google Scholar 

  2. Cragg, G. M. & Newman, D. J. Biochim. Biophys. Acta 1830, 3670–3695 (2013).

    Article  CAS  Google Scholar 

  3. Namjoshi, O. A. & Cook, J. M. Alkaloids Chem. Biol. 76, 63–169 (2016).

    Article  CAS  Google Scholar 

  4. Hashimoto, Y., Hori, R., Okumura, K. & Yasuhara, M. Br. J. Pharmacol. 88, 71–77 (1986).

    Article  CAS  Google Scholar 

  5. Zhang, X. et al. Cell Biochem. Biophys. 72, 411–416 (2015).

    Article  CAS  Google Scholar 

  6. Jin, G.-L. et al. J. Ethnopharmacol. 152, 33–52 (2014).

    Article  CAS  Google Scholar 

  7. Schmidt, D. & Stöckigt, J. Planta Med. 61, 254–258 (1995).

    Article  CAS  Google Scholar 

  8. Tatsis, E. C. et al. Nat. Commun. 8, 316 (2017).

    Article  Google Scholar 

  9. Góngora-Castillo, E. et al. PLoS One 7, e52506 (2012).

    Article  Google Scholar 

  10. Dang, T.-T. T., Franke, J., Tatsis, E. & O’Connor, S. E. Angew. Chem. Int. Edn. Engl. 56, 9440–9444 (2017).

    Article  CAS  Google Scholar 

  11. Stapleton, J. A. et al. PLoS One 11, e0147229 (2016).

    Article  Google Scholar 

  12. Yuzurihara, M. et al. Eur. J. Pharmacol. 444, 183–189 (2002).

    Article  CAS  Google Scholar 

  13. Yang, Z. D. et al. Nat. Prod. Res. 26, 22–28 (2012).

    Article  Google Scholar 

  14. Takayama, H., Watanabe, T., Seki, H., Aimi, N. & Sakai, S. Tetrahedr. Lett. 33, 6831–6834 (1992).

    Article  CAS  Google Scholar 

  15. Ahamada, K., Benayad, S., Poupon, E. & Evanno, L. Tetrahedr. Lett. 57, 1718–1720 (2016).

    Article  CAS  Google Scholar 

  16. Corbin, C. et al. Protoplasma 254, 1813–1818 (2017).

    Article  CAS  Google Scholar 

  17. Eckermann, R. & Gaich, T. Chemistry 22, 5749–5755 (2016).

    Article  CAS  Google Scholar 

  18. Elisabetsky, E. & Costa-Campos, L. Evid. Based Complement. Alternat. Med. 3, 39–48 (2006).

    Article  CAS  Google Scholar 

  19. Korytowski, W., Felix, C. C. & Kalyanaraman, B. Biochem. Biophys. Res. Commun. 144, 692–698 (1987).

    Article  CAS  Google Scholar 

  20. Blom, T. J. et al. Planta 183, 170–177 (1991).

    Article  CAS  Google Scholar 

  21. Singh, D. et al. Proc. Indian Natl. Sci. Acad. 74, 97–109 (2008).

  22. Payne, R. M. E. et al. Nat. Plants 3, 16208 (2017).

    Article  Google Scholar 

  23. Younai, A., Zeng, B. S., Meltzer, H. Y. & Scheidt, K. A. Angew. Chem. Int. Edn Engl. 54, 6900–6904 (2015).

    Article  CAS  Google Scholar 

  24. Wehrens, R. & Buydens, L. M. C. J. Stat. Softw. 21, 1–19 (2007).

    Article  Google Scholar 

  25. Lindbo, J. A. Plant Physiol. 145, 1232–1240 (2007).

    Article  CAS  Google Scholar 

  26. Ro, D. K. et al. BMC Biotechnol. 8, 83 (2008).

    Article  Google Scholar 

  27. Nguyen, D. T. et al. J. Biol. Chem. 285, 16588–16598 (2010).

    Article  CAS  Google Scholar 

  28. Parage, C. et al. Plant Physiol. 172, 1563–1577 (2016).

    Article  CAS  Google Scholar 

  29. Valentine, T. et al. Plant Physiol. 136, 3999–4009 (2004).

    Article  CAS  Google Scholar 

  30. Stavrinides, A. et al. Nat. Commun. 7, 12116 (2016).

    Article  CAS  Google Scholar 

  31. Guirimand, G. et al. Plant Cell Rep. 28, 1215–1234 (2009).

    Article  CAS  Google Scholar 

  32. Koike, T., Takayama, H. & Sakai, S. Chem. Pharm. Bull. (Tokyo) 39, 1677–1681 (1991).

    Article  CAS  Google Scholar 

  33. Li, L., Chang, Z., Pan, Z., Fu, Z.-Q. & Wang, X. Proc. Natl. Acad. Sci. USA 105, 13883–13888 (2008).

    Article  CAS  Google Scholar 

  34. Miettinen, K. et al. Nat. Commun. 5, 3606 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

T.T.T.D. is grateful to the EMBO Long Term Fellowship ALTF 739–2015. J.F. gratefully acknowledges DFG postdoctoral funding (FR 3720/1-1). This work was supported by grants from the European Research Council (311363), BBSRC (BB/J004561/1) (S.E.O.) and from the Région Centre, France (BioPROPHARM, CatharSIS grants) (V.C.). We thank E. Poupon and L. Evanno (Univ. Paris-Sud) for their generous gift of polyneuridine aldehyde standard. Rauwolfia serpentina seeds were a generous gift from S. Hiremath, Karnataka University, India. D.-K. Ro (University of Calgary) generously provided pESC-Leu2d. Images of R. serpentina and C. roseus were provided by T. Nguyen (Ho Chi Minh City University of Science). We thank L. Caputi (John Innes Centre) for his assistance in building the homology model of CrAS and RsSBE and L. Hill and G. Saalbach of the Molecular Analysis platform at John Innes Centre for their assistance in metabolic analysis. We are grateful to D. Grzech for her assistance in cloning mutant constructs. We thank R. Hughes and M. Franceschetti (John Innes Centre) for preparing the modified TRBO vector.

Author information

Authors and Affiliations

Authors

Contributions

T.-T.T.D., J.F. and S.E.O. designed the experiments and wrote the manuscript. T.-T.T.D. characterized RsSBE, GsSBE and CrAS in vitro and in vivo, and performed in planta combinatorial assay and analysis. J.F. performed all substrate purification, synthesis and product characterizations. C.L. contributed to N. benthamiana work. I.S.T.C. and V.C. performed VIGS and localization experiments.

Corresponding author

Correspondence to Sarah E. O’Connor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–4

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, TT.T., Franke, J., Carqueijeiro, I.S.T. et al. Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol 14, 760–763 (2018). https://doi.org/10.1038/s41589-018-0078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0078-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing