Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes

This article has been updated


Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochrome P450s from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the β-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sarpagan bridge enzyme candidate screening using combinatorial expression in N. benthamiana.
Fig. 2: The cyclization and aromatization catalytic function of recombinant RsSBE, GsSBE and CrAS depend on the substrate.

Change history

  • 26 July 2019

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.


  1. 1.

    O’Connor, S. E. & Maresh, J. J. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  Google Scholar 

  2. 2.

    Cragg, G. M. & Newman, D. J. Biochim. Biophys. Acta 1830, 3670–3695 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Namjoshi, O. A. & Cook, J. M. Alkaloids Chem. Biol. 76, 63–169 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Hashimoto, Y., Hori, R., Okumura, K. & Yasuhara, M. Br. J. Pharmacol. 88, 71–77 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    Zhang, X. et al. Cell Biochem. Biophys. 72, 411–416 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Jin, G.-L. et al. J. Ethnopharmacol. 152, 33–52 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Schmidt, D. & Stöckigt, J. Planta Med. 61, 254–258 (1995).

    CAS  Article  Google Scholar 

  8. 8.

    Tatsis, E. C. et al. Nat. Commun. 8, 316 (2017).

    Article  Google Scholar 

  9. 9.

    Góngora-Castillo, E. et al. PLoS One 7, e52506 (2012).

    Article  Google Scholar 

  10. 10.

    Dang, T.-T. T., Franke, J., Tatsis, E. & O’Connor, S. E. Angew. Chem. Int. Edn. Engl. 56, 9440–9444 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Stapleton, J. A. et al. PLoS One 11, e0147229 (2016).

    Article  Google Scholar 

  12. 12.

    Yuzurihara, M. et al. Eur. J. Pharmacol. 444, 183–189 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    Yang, Z. D. et al. Nat. Prod. Res. 26, 22–28 (2012).

    Article  Google Scholar 

  14. 14.

    Takayama, H., Watanabe, T., Seki, H., Aimi, N. & Sakai, S. Tetrahedr. Lett. 33, 6831–6834 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    Ahamada, K., Benayad, S., Poupon, E. & Evanno, L. Tetrahedr. Lett. 57, 1718–1720 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Corbin, C. et al. Protoplasma 254, 1813–1818 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Eckermann, R. & Gaich, T. Chemistry 22, 5749–5755 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Elisabetsky, E. & Costa-Campos, L. Evid. Based Complement. Alternat. Med. 3, 39–48 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Korytowski, W., Felix, C. C. & Kalyanaraman, B. Biochem. Biophys. Res. Commun. 144, 692–698 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    Blom, T. J. et al. Planta 183, 170–177 (1991).

    CAS  Article  Google Scholar 

  21. 21.

    Singh, D. et al. Proc. Indian Natl. Sci. Acad. 74, 97–109 (2008).

  22. 22.

    Payne, R. M. E. et al. Nat. Plants 3, 16208 (2017).

    Article  Google Scholar 

  23. 23.

    Younai, A., Zeng, B. S., Meltzer, H. Y. & Scheidt, K. A. Angew. Chem. Int. Edn Engl. 54, 6900–6904 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Wehrens, R. & Buydens, L. M. C. J. Stat. Softw. 21, 1–19 (2007).

    Article  Google Scholar 

  25. 25.

    Lindbo, J. A. Plant Physiol. 145, 1232–1240 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    Ro, D. K. et al. BMC Biotechnol. 8, 83 (2008).

    Article  Google Scholar 

  27. 27.

    Nguyen, D. T. et al. J. Biol. Chem. 285, 16588–16598 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Parage, C. et al. Plant Physiol. 172, 1563–1577 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Valentine, T. et al. Plant Physiol. 136, 3999–4009 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Stavrinides, A. et al. Nat. Commun. 7, 12116 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Guirimand, G. et al. Plant Cell Rep. 28, 1215–1234 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Koike, T., Takayama, H. & Sakai, S. Chem. Pharm. Bull. (Tokyo) 39, 1677–1681 (1991).

    CAS  Article  Google Scholar 

  33. 33.

    Li, L., Chang, Z., Pan, Z., Fu, Z.-Q. & Wang, X. Proc. Natl. Acad. Sci. USA 105, 13883–13888 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Miettinen, K. et al. Nat. Commun. 5, 3606 (2014).

    Article  Google Scholar 

Download references


T.T.T.D. is grateful to the EMBO Long Term Fellowship ALTF 739–2015. J.F. gratefully acknowledges DFG postdoctoral funding (FR 3720/1-1). This work was supported by grants from the European Research Council (311363), BBSRC (BB/J004561/1) (S.E.O.) and from the Région Centre, France (BioPROPHARM, CatharSIS grants) (V.C.). We thank E. Poupon and L. Evanno (Univ. Paris-Sud) for their generous gift of polyneuridine aldehyde standard. Rauwolfia serpentina seeds were a generous gift from S. Hiremath, Karnataka University, India. D.-K. Ro (University of Calgary) generously provided pESC-Leu2d. Images of R. serpentina and C. roseus were provided by T. Nguyen (Ho Chi Minh City University of Science). We thank L. Caputi (John Innes Centre) for his assistance in building the homology model of CrAS and RsSBE and L. Hill and G. Saalbach of the Molecular Analysis platform at John Innes Centre for their assistance in metabolic analysis. We are grateful to D. Grzech for her assistance in cloning mutant constructs. We thank R. Hughes and M. Franceschetti (John Innes Centre) for preparing the modified TRBO vector.

Author information




T.-T.T.D., J.F. and S.E.O. designed the experiments and wrote the manuscript. T.-T.T.D. characterized RsSBE, GsSBE and CrAS in vitro and in vivo, and performed in planta combinatorial assay and analysis. J.F. performed all substrate purification, synthesis and product characterizations. C.L. contributed to N. benthamiana work. I.S.T.C. and V.C. performed VIGS and localization experiments.

Corresponding author

Correspondence to Sarah E. O’Connor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–4

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dang, TT.T., Franke, J., Carqueijeiro, I.S.T. et al. Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. Nat Chem Biol 14, 760–763 (2018).

Download citation

Further reading

  • Collected mass spectrometry data on monoterpene indole alkaloids from natural product chemistry research

    • Alexander E. Fox Ramos
    • , Pierre Le Pogam
    • , Charlotte Fox Alcover
    • , Elvis Otogo N’Nang
    • , Gaëla Cauchie
    • , Hazrina Hazni
    • , Khalijah Awang
    • , Dimitri Bréard
    • , Antonio M. Echavarren
    • , Michel Frédérich
    • , Thomas Gaslonde
    • , Marion Girardot
    • , Raphaël Grougnet
    • , Mariia S. Kirillova
    • , Marina Kritsanida
    • , Christelle Lémus
    • , Anne-Marie Le Ray
    • , Guy Lewin
    • , Marc Litaudon
    • , Lengo Mambu
    • , Sylvie Michel
    • , Fedor M. Miloserdov
    • , Michael E. Muratore
    • , Pascal Richomme-Peniguel
    • , Fanny Roussi
    • , Laurent Evanno
    • , Erwan Poupon
    • , Pierre Champy
    •  & Mehdi A. Beniddir

    Scientific Data (2019)


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing