Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

tRNA tracking for direct measurements of protein synthesis kinetics in live cells

An Author Correction to this article was published on 05 April 2019

This article has been updated

Abstract

Our ability to directly relate results from test-tube biochemical experiments to the kinetics in living cells is very limited. Here we present experimental and analytical tools to directly study the kinetics of fast biochemical reactions in live cells. Dye-labeled molecules are electroporated into bacterial cells and tracked using super-resolved single-molecule microscopy. Trajectories are analyzed by machine-learning algorithms to directly monitor transitions between bound and free states. In particular, we measure the dwell time of tRNAs on ribosomes, and hence achieve direct measurements of translation rates inside living cells at codon resolution. We find elongation rates with tRNAPhe that are in perfect agreement with previous indirect estimates, and once fMet-tRNAfMet has bound to the 30S ribosomal subunit, initiation of translation is surprisingly fast and does not limit the overall rate of protein synthesis. The experimental and analytical tools for direct kinetics measurements in live cells have applications far beyond bacterial protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tracking of single [Cy5]tRNAPhe in live E. coli cells.
Fig. 2: Internalized [Cy5]tRNAPhe takes an active part in translation.
Fig. 3: [Cy5]tRNAPhe dwell time is longer on slow ribosomes.
Fig. 4: Simulated single-molecule microscopy.
Fig. 5: Analysis of simulated movies.
Fig. 6: In vivo initiation kinetics using Cy5-labeled initiator tRNAfMet.

Similar content being viewed by others

Change history

  • 05 April 2019

    In the version of this article originally published, the values on the y axis of Fig. 6d were incorrect. They should be 0.00, 0.02, 0.04, 0.06 and 0.08 instead of the previous 0.00, 0.04, 0.08 and 0.12. The error has been corrected in the HTML and PDF versions of this paper.

References

  1. Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl. Acad. Sci. USA 111, 11413–11418 (2014).

    Article  CAS  Google Scholar 

  2. Uphoff, S., Reyes-Lamothe, R., Garza de Leon, F., Sherratt, D. J. & Kapanidis, A. N. Single-molecule DNA repair in live bacteria. Proc. Natl. Acad. Sci. USA 110, 8063–8068 (2013).

    Article  CAS  Google Scholar 

  3. Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).

    Article  Google Scholar 

  4. Crawford, R. et al. Long-lived intracellular single-molecule fluorescence using electroporated molecules. Biophys. J. 105, 2439–2450 (2013).

    Article  CAS  Google Scholar 

  5. Plochowietz, A., Farrell, I., Smilansky, Z., Cooperman, B. S. & Kapanidis, A. N. In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Res. 45, 926–937 (2017).

    Article  CAS  Google Scholar 

  6. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  7. Johansson, M., Bouakaz, E., Lovmar, M. & Ehrenberg, M. The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell 30, 589–598 (2008).

    Article  CAS  Google Scholar 

  8. Sievers, A., Beringer, M., Rodnina, M. V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101, 7897–7901 (2004).

    Article  CAS  Google Scholar 

  9. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  10. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  11. Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012).

    Article  CAS  Google Scholar 

  12. Blanchard, S. C., Kim, H. D., Gonzalez, R. L. Jr., Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  13. Chen, J. et al. Dynamic pathways of -1 translational frameshifting. Nature 512, 328–332 (2014).

    Article  CAS  Google Scholar 

  14. Rodnina, M. V. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci. 25, 1390–1406 (2016).

    Article  CAS  Google Scholar 

  15. Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol. Cell 23, 183–193 (2006).

    Article  CAS  Google Scholar 

  16. Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J. 25, 2539–2550 (2006).

    Article  CAS  Google Scholar 

  17. Loy, G. & Zelinsky, A. Fast radial symmetry for detecting points of interest. IEEE Trans. Pattern Anal. Mach. Intell. 25, 959–973 (2003).

    Article  Google Scholar 

  18. Lindén, M., Ćurić, V., Amselem, E. & Elf, J. Pointwise error estimates in localization microscopy. Nat. Commun. 8, 15115 (2017).

    Article  Google Scholar 

  19. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  Google Scholar 

  20. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21–38 (2012).

    Article  CAS  Google Scholar 

  21. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. 2nd edn. (Springer, New York, 2002).

  22. Furano, A. V. Content of elongation factor Tu in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 4780–4784 (1975).

    Article  CAS  Google Scholar 

  23. Avcilar-Kucukgoze, I. et al. Discharging tRNAs: a tug of war between translation and detoxification in Escherichia coli. Nucleic Acids Res. 44, 8324–8334 (2016).

    Article  CAS  Google Scholar 

  24. Dittmar, K. A., Sørensen, M. A., Elf, J., Ehrenberg, M. & Pan, T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 6, 151–157 (2005).

    Article  CAS  Google Scholar 

  25. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  CAS  Google Scholar 

  26. Nakahigashi, K. et al. Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Res. 23, 193–201 (2016).

    Article  CAS  Google Scholar 

  27. Chen, J., Petrov, A., Tsai, A., O’Leary, S. E. & Puglisi, J. D. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol. 20, 718–727 (2013).

    Article  CAS  Google Scholar 

  28. Liang, S. T., Xu, Y. C., Dennis, P. & Bremer, H. mRNA composition and control of bacterial gene expression. J. Bacteriol. 182, 3037–3044 (2000).

    Article  CAS  Google Scholar 

  29. Borg, A. & Ehrenberg, M. Determinants of the rate of mRNA translocation in bacterial protein synthesis. J. Mol. Biol. 427, 1835–1847 (2015).

    Article  CAS  Google Scholar 

  30. Bilgin, N., Claesens, F., Pahverk, H. & Ehrenberg, M. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J. Mol. Biol. 224, 1011–1027 (1992).

    Article  CAS  Google Scholar 

  31. Ruusala, T., Andersson, D., Ehrenberg, M. & Kurland, C. G. Hyper-accurate ribosomes inhibit growth. EMBO J. 3, 2575–2580 (1984).

    Article  CAS  Google Scholar 

  32. Fange, D., Mahmutovic, A. & Elf, J. MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit. Bioinformatics 28, 3155–3157 (2012).

    Article  CAS  Google Scholar 

  33. Lindén, M., Ćurić, V., Boucharin, A., Fange, D. & Elf, J. Simulated single molecule microscopy with SMeagol. Bioinformatics 32, 2394–2395 (2016).

    Article  Google Scholar 

  34. Subramaniam, A. R., Zid, B. M. & O’Shea, E. K. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159, 1200–1211 (2014).

    Article  CAS  Google Scholar 

  35. Goyal, A., Belardinelli, R., Maracci, C., Milón, P. & Rodnina, M. V. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res. 43, 10700–10712 (2015).

    Article  CAS  Google Scholar 

  36. Milon, P. et al. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep. 11, 312–316 (2010).

    Article  CAS  Google Scholar 

  37. Pan, D., Qin, H. & Cooperman, B. S. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. RNA 15, 346–354 (2009).

    Article  CAS  Google Scholar 

  38. Smith, A., Naik, P. A. & Tsai, C. L. Markov-switching model selection using Kullback-Leibler divergence. J. Econom. 134, 553–577 (2006).

    Article  Google Scholar 

  39. Mondal, J., Bratton, B. P., Li, Y., Yethiraj, A. & Weisshaar, J. C. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells. Biophys. J. 100, 2605–2613 (2011).

    Article  CAS  Google Scholar 

  40. Johansson, M. et al. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proc. Natl. Acad. Sci. USA 108, 79–84 (2011).

    Article  CAS  Google Scholar 

  41. Zhang, J., Ieong, K. W., Johansson, M. & Ehrenberg, M. Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome. Proc. Natl. Acad. Sci. USA 112, 9602–9607 (2015).

    Article  CAS  Google Scholar 

  42. Zhang, J., Ieong, K. W., Mellenius, H. & Ehrenberg, M. Proofreading neutralizes potential error hotspots in genetic code translation by transfer RNAs. RNA 22, 896–904 (2016).

    Article  CAS  Google Scholar 

  43. Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  Google Scholar 

  44. Gromadski, K. B., Daviter, T. & Rodnina, M. V. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21, 369–377 (2006).

    Article  CAS  Google Scholar 

  45. Kurland, C.G., Hughes, D. & Ehrenberg, M. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt, F.C.) (ASM Press, Washington, 1996).

  46. Schmidt, C. M., Shis, D. L., Nguyen-Huu, T. D. & Bennett, M. R. Stable maintenance of multiple plasmids in E. coli using a single selective marker. ACS Synth. Biol. 1, 445–450 (2012).

    Article  CAS  Google Scholar 

  47. Tenson, T., Herrera, J. V., Kloss, P., Guarneros, G. & Mankin, A. S. Inhibition of translation and cell growth by minigene expression. J. Bacteriol. 181, 1617–1622 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanahan, D., Jessee, J. & Bloom, F. R. Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 204, 63–113 (1991).

    Article  CAS  Google Scholar 

  49. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012).

    Article  CAS  Google Scholar 

  50. Harpsøe, K. B. W., Andersen, M. I. & Kjægaard, P. Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs). Astron. Astrophys. 537, A50 (2012).

    Article  Google Scholar 

  51. Ranefall, P., Sadanandan, S.K. & Wählby, C. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). 205–208 (IEEE, 2016).

  52. Vestergaard, C. L., Blainey, P. C. & Flyvbjerg, H. Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89, 022726 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Sanyal and M. Ehrenberg (Uppsala University) for sharing components of the reconstituted protein synthesis system; D. Hughes (Uppsala University) for the CH2273 strain; P. Leroy (Uppsala University) for construction of the PL22A9 EF-Tu-mEos2 strain; P. Walter (UCSF) for the pDMF6 plasmid; K. Kipper, A. Boucharin, V. Ćurić and D. Fange for providing technical expertise; E. Amselem for measuring the PSF, and M. Ehrenberg and J. Puglisi for comments on the manuscript. This work was supported by The Swedish Research Council (2015-04111, M.J.), The Wenner-Gren Foundations (M.J., I.L.V.), Carl Tryggers Stiftelse för Vetenskaplig Forskning (CTS 15:243, M.J.), the European Research Council (ERC-2013-CoG 616047 SMILE, J.E.), and Knut and Alice Wallenberg Foundation (J.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.J. conceived the project, except for the data analysis and simulation pipelines, which were conceived by M.L. and J.E. M.J. and I.L.V. designed experiments. I.L.V. performed and analyzed in vivo experiments. M.L. generated and analyzed simulated data and wrote analysis code. J.A.R. and M.M. participated in method development and provided reagents. K.-W.I. performed in vitro experiments. M.J., M.L., J.E. and I.L.V. wrote the manuscript.

Corresponding author

Correspondence to Magnus Johansson.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–2, Supplementary Figures 1–6, Supplementary Note

Reporting Summary

Supplementary Video 1

Experimental and simulated microscopy data of [Cy5]tRNAPhe diffusion in live cells. Top panels show fluorescence microscopy images acquired sequentially with 5 ms camera exposure and 1.5 ms laser illumination (639 nm) per frame.

Supplementary Video 2

Experimental microscopy data of [Cy5]tRNAfMet diffusion in live cells. The left panel shows raw fluorescence microscopy data acquired at 5 ms camera exposure and 1.5 ms laser illumination (639 nm) per frame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, I.L., Lindén, M., Aguirre Rivera, J. et al. tRNA tracking for direct measurements of protein synthesis kinetics in live cells. Nat Chem Biol 14, 618–626 (2018). https://doi.org/10.1038/s41589-018-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0063-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing