Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system

Abstract

The unusually high demand for metals in the brain, along with insufficient understanding of how their dysregulation contributes to neurological diseases, motivates the study of how inorganic chemistry influences neural circuitry. We now report that the transition metal copper is essential for regulating rest–activity cycles and arousal. Copper imaging and gene expression analysis in zebrafish identifies the locus coeruleus–norepinephrine (LC-NE) system, a vertebrate-specific neuromodulatory circuit critical for regulating sleep, arousal, attention, memory and emotion, as a copper-enriched unit with high levels of copper transporters CTR1 and ATP7A and the copper enzyme dopamine β-hydroxylase (DBH) that produces NE. Copper deficiency induced by genetic disruption of ATP7A, which loads copper into DBH, lowers NE levels and hinders LC function as manifested by disruption in rest–activity modulation. Moreover, LC dysfunction caused by copper deficiency from ATP7A disruption can be rescued by restoring synaptic levels of NE, establishing a molecular CTR1–ATP7A–DBH–NE axis for copper-dependent LC function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular imaging reveals distributions of labile copper in the living brain.
Fig. 2: LA-ICP-MS imaging reveals heterogeneous copper distribution patterns in the brain during development.
Fig. 3: Dysregulation of brain copper homeostasis alters arousal and rest–activity behavior.
Fig. 4: Copper transporter gene expression is highly and specifically enriched in LC.
Fig. 5: LC-NE circuitry mediates copper-regulated behaviors.
Fig. 6: Copper transporter gene duplication coincides with the rise of brain NE levels and NE transport in Gnathostomata.

Similar content being viewed by others

References

  1. Bush, A. I. Metals and neuroscience. Curr. Opin. Chem. Biol. 4, 184–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Que, E. L., Domaille, D. W. & Chang, C. J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Barnham, K. J., Masters, C. L. & Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kaler, S. G. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat. Rev. Neurol. 7, 15–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Madsen, E. & Gitlin, J. D. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 30, 317–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Zlatic, S., Comstra, H. S., Gokhale, A., Petris, M. J. & Faundez, V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol. Dis. 81, 154–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duncan, C. & White, A. R. Copper complexes as therapeutic agents. Metallomics 4, 127–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lutsenko, S., Bhattacharjee, A. & Hubbard, A. L. Copper handling machinery of the brain. Metallomics 2, 596–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Prohaska, J. R. Functions of trace elements in brain metabolism. Physiol. Rev. 67, 858–901 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Warren, P. J., Earl, C. J. & Thompson, R. H. The distribution of copper in human brain. Brain 83, 709–717 (1960).

    Article  CAS  PubMed  Google Scholar 

  11. Zecca, L. et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl Acad. Sci. USA 101, 9843–9848 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. German, D. C. et al. Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 32, 667–676 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Braak, H. & Del Tredici, K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr. Opin. Neurol. 25, 708–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Cotruvo, J. A. Jr, Aron, A. T., Ramos-Torres, K. M. & Chang, C. J. Synthetic fluorescent probes for studying copper in biological systems. Chem. Soc. Rev. 44, 4400–4414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nevitt, T., Ohrvik, H. & Thiele, D. J. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim. Biophys. Acta 1823, 1580–1593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson, N. J. & Winge, D. R. Copper metallochaperones. Annu. Rev. Biochem. 79, 537–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Halloran, T. V. & Culotta, V. C. Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060 (2000).

    Article  PubMed  Google Scholar 

  18. Banci, L. et al. Affinity gradients drive copper to cellular destinations. Nature 465, 645–648 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Lutsenko, S., Barnes, N. L., Bartee, M. Y. & Dmitriev, O. Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 87, 1011–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Aston-Jones, G. & Waterhouse, B. Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 1645, 75–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Moret, C. & Briley, M. The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 7, 9–13 (2011). (Suppl. 1).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaufman, S. & Friedman, S. Dopamine-β-hydroxylase. Pharmacol. Rev. 17, 71–100 (1965).

    CAS  PubMed  Google Scholar 

  24. Mangold, J. B. & Klinman, J. P. Mechanism-based inactivation of dopamine β-monooxygenase by β-chlorophenethylamine. J. Biol. Chem. 259, 7772–7779 (1984).

    CAS  PubMed  Google Scholar 

  25. Ash, D. E., Papadopoulos, N. J., Colombo, G. & Villafranca, J. J. Kinetic and spectroscopic studies of the interaction of copper with dopamine β-hydroxylase. J. Biol. Chem. 259, 3395–3398 (1984).

    CAS  PubMed  Google Scholar 

  26. Kim, B. E., Nevitt, T. & Thiele, D. J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4, 176–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B. & Agid, Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res. 275, 321–328 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Hornby, P. J. & Piekut, D. T. Immunoreactive dopamine β-hydroxylase in neuronal groups in the goldfish brain. Brain Behav. Evol. 32, 252–256 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Ekström, P., Reschke, M., Steinbusch, H. & van Veen, T. Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: an immunohistochemical analysis. J. Comp. Neurol. 254, 297–313 (1986).

    Article  PubMed  Google Scholar 

  30. Parent, A. Functional anatomy and evolution of monoaminergic systems. Am. Zool. 24, 783–790 (1984).

    Article  Google Scholar 

  31. Hirayama, T., Van de Bittner, G. C., Gray, L. W., Lutsenko, S. & Chang, C. J. Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl Acad. Sci. USA 109, 2228–2233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 14219–14224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hare, D. J., New, E. J., de Jonge, M. D. & McColl, G. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem. Soc. Rev. 44, 5941–5958 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ackerman, C. M., Lee, S. & Chang, C. J. Analytical methods for imaging metals in biology: from transition metal metabolism to transition metal signaling. Anal. Chem. 89, 22–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Colburn, R. W. & Maas, J. W. Adenosine triphosphate–metal–norepinephrine ternary complexes and catecholamine binding. Nature 208, 37–41 (1965).

    Article  CAS  PubMed  Google Scholar 

  36. Sato, M., Ohtomo, K., Daimon, T., Sugiyama, T. & Iijima, K. Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J. Histochem. Cytochem. 42, 1585–1591 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Gaier, E. D., Eipper, B. A. & Mains, R. E. Copper signaling in the mammalian nervous system: synaptic effects. J. Neurosci. Res. 91, 2–19 (2013).

    CAS  PubMed  Google Scholar 

  38. Madsen, E. C. & Gitlin, J. D. Zebrafish mutants calamity and catastrophe define critical pathways of gene-nutrient interactions in developmental copper metabolism. PLoS Genet. 4, e1000261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zimbrean, P. C. & Schilsky, M. L. Psychiatric aspects of Wilson disease: a review. Gen. Hosp. Psychiatry 36, 53–62 (2014).

    Article  PubMed  Google Scholar 

  40. Pantoja, C. et al. Neuromodulatory regulation of behavioral individuality in zebrafish. Neuron 91, 587–601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, S. et al. Light-dependent regulation of sleep and wake states by prokineticin 2 in zebrafish. Neuron 95, 153–168.e156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deisseroth, K. Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caballero, J. & Nahata, M. C. Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin. Ther. 25, 3065–3083 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Panopoulou, G. & Poustka, A. J. Timing and mechanism of ancient vertebrate genome duplications — the adventure of a hypothesis. Trends Genet. 21, 559–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Dmitriev, O. et al. Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc. Natl Acad. Sci. USA 103, 5302–5307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, S. B., Jones, J. R. & de Lecea, L. Hypocretins, neural systems, physiology, and psychiatric disorders. Curr. Psychiatry Rep. 18, 7 (2016).

    Article  PubMed  Google Scholar 

  50. Singh, C., Oikonomou, G. & Prober, D. A. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 4, e07000 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Atkinson, M. J. & Bingman, C. Elemental composition of commercial seasalts. J. Aquaricult. Aquat. Sci. VIII, 39–43 (1998).

    Google Scholar 

  52. Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126, 3757–3767 (1999).

    CAS  PubMed  Google Scholar 

  53. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Xiao, T. & Baier, H. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat. Neurosci. 10, 1529–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. T. Look (Dana-Farber Cancer Institute) and J. Gitlin (Marine Biological Laboratory) for providing plasmids and transgenic fish lines, C. Miller (University of California, Berkeley) and R. Segev (Ben Gurion University of the Negev) for providing fish samples, and R. Feng and R. Fish for assistance with pilot experiments. We thank the NIH (GM79465 to C.J.C. and PN2EY018241 to E.Y.I.) for providing funding for this work. C.J.C. is an Investigator of the Howard Hughes Medical Institute and a CIFAR Senior Fellow. C.M.A. was partially supported by a Hertz Foundation Graduate Fellowship and a Chemical Biology Training Grant from the NIH (T32 GM066698). Experiments at the CRL Molecular Imaging Center were supported by the Helen Wills Neuroscience Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.X. and C.J.C. designed research; T.X., C.M.A., E.C.C. and A.H. performed imaging and behavioral assays; T.X., C.M.A. and B.T. performed copper imaging and analysis assays; S.J. and J.C. synthesized and characterized fluorescent copper probes; T.X. and C.S.L. conducted in situ hybridization and IHC assays; T.X., C.M.A., E.C.C. and C.J.C. wrote the manuscript; E.Y.I. provided valuable input on the manuscript.

Corresponding author

Correspondence to Christopher J. Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–32 and Supplementary Note

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Ackerman, C.M., Carroll, E.C. et al. Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol 14, 655–663 (2018). https://doi.org/10.1038/s41589-018-0062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0062-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing