Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Membrane association of monotopic phosphoglycosyl transferase underpins function

Abstract

Polyprenol phosphate phosphoglycosyl transferases (PGTs) catalyze the first membrane-committed step in assembly of essential glycoconjugates. Currently there is no structure–function information to describe how monotopic PGTs coordinate the reaction between membrane-embedded and soluble substrates. We describe the structure and mode of membrane association of PglC, a PGT from Campylobacter concisus. The structure reveals a unique architecture, provides mechanistic insight and identifies ligand-binding determinants for PglC and the monotopic PGT superfamily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PglC reveals a distinct architecture and topology for monotopic membrane proteins.
Fig. 2: PglC crystallizes in a native conformation.
Fig. 3: The active site structure supports the proposed mechanism of PglC.

Similar content being viewed by others

References

  1. Lukose, V., Walvoort, M. T. C. & Imperiali, B. Glycobiology 27, 820–833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Price, N. P. & Momany, F. A. Glycobiology 15, 29R–42R (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Chung, B. C. et al. Science 341, 1012–1016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lukose, V. et al. Biochemistry 54, 7326–7334 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Tytgat, H. L. & Lebeer, S. Microbiol. Mol. Biol. Rev. 78, 372–417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bugg, T. D., Rodolis, M. T., Mihalyi, A. & Jamshidi, S. Bioorg. Med. Chem. 24, 6340–6347 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Das, D., Kuzmic, P. & Imperiali, B. Proc. Natl Acad. Sci. USA 114, 7019–7024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Dabbagh, B. et al. Biochimie. 127, 249–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Hartley, M. D., Schneggenburger, P. E. & Imperiali, B. Proc. Natl Acad. Sci. USA 110, 20863–20870 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holm, L. & Rosenstrom, P. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoki, S., Thomas, A., Decaffmeyer, M., Brasseur, R. & Epand, R. M. J. Biol. Chem. 285, 33371–33380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heijne, G. EMBO J. 5, 3021–3027 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furlong, S. E., Ford, A., Albarnez-Rodriguez, L. & Valvano, M. A. Sci. Rep. 5, 9178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel, K. B., Ciepichal, E., Swiezewska, E. & Valvano, M. A. Glycobiology 22, 116–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Nasie, I., Steiner-Mordoch, S. & Schuldiner, S. Methods Mol. Biol. 1033, 121–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. J. Mol. Biol. 179, 125–142 (1984).

    Article  CAS  PubMed  Google Scholar 

  17. Zidovetzki, R., Rost, B., Armstrong, D. L. & Pecht, I. Biophys. Chem. 100, 555–575 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, S., Daley, D. T., Luscombe, N. M., Berman, H. M. & Thornton, J. M. Nucleic Acids Res. 29, 943–954 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lloyd, A. J., Brandish, P. E., Gilbey, A. M. & Bugg, T. D. H. J. Bacteriol. 186, 1747–1757 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amer, A. O. & Valvano, M. A. Microbiology 148, 571–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Pace, C. N. & Scholtz, J. M. Biophys. J. 75, 422–427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen, K. N. & Dunaway-Mariano, D. Curr. Opin. Struct. Biol. 41, 172–179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ardiccioni, C. et al. Nat. Commun. 7, 10175 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Studier, F. W. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Weeks, S. D., Drinker, M. & Loll, P. J. Protein Expr. Purif. 53, 40–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Koszelak-Rosenblum, M. et al. Protein Sci. 18, 1828–1839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams, P. D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider, T. R. & Sheldrick, G. M. Acta Crystallogr. D Biol. Crystallogr 58, 1772–1779 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Terwilliger, T. C. & Acta Crystallogr., D. Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  30. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. PLoS Comput. Biol. 13, e1005324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ovchinnikov, S. et al. Science 355, 294–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCoy, A. J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Acta. Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Afonine, P. V. et al. Acta. Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Rajashankar for assistance with phasing and the staff at NECAT (APS) for facilitating X-ray data collection. Financial support for this work was provided by the National Institutes of Health: R01-GM039334 to B.I., the Predoctoral Training Program in the Biological Sciences (T32-GM007287) to S.E. and the Biomolecular Pharmacology Program Grant (T32-GM008541) to L.C.R. This work is also based upon research conducted at the Northeastern Collaborative Access Team beamlines 24-ID-E and 24-ID-C, which is funded by the National Institute of General Medical Sciences from the National Institutes of Health (P41 GM103403).

Author information

Authors and Affiliations

Authors

Contributions

L.C.R. crystallized, collected data, determined the structure, refined and analyzed the model of PglC and performed phosphate release kinetics; D.D. optimized expression, designed and made constructs, expressed and purified PglC, carried out lipid analysis and analyzed the structure. S.E. designed and performed SCAM analyses. V.L. designed and purified original constructs for crystallization and A.J.L. obtained the original crystallization conditions. L.C.R., D.D. and S.E. wrote the manuscript. B.I. and K.N.A. conceived the project, designed experiments, assisted with data analysis and interpretation, and critically edited the manuscript.

Corresponding authors

Correspondence to Barbara Imperiali or Karen N. Allen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–5

Reporting Summary

Dataset 1

Supplementary Dataset 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, L.C., Das, D., Entova, S. et al. Membrane association of monotopic phosphoglycosyl transferase underpins function. Nat Chem Biol 14, 538–541 (2018). https://doi.org/10.1038/s41589-018-0054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0054-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing