Shared strategies for β-lactam catabolism in the soil microbiome

A Publisher Correction to this article was published on 27 December 2018

This article has been updated


The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ABC strains catabolize penicillin as their sole carbon source.
Fig. 2: Evidence for shared strategy for penicillin catabolism among ABC strains.
Fig. 3: paaF and the put operon are necessary for penicillin catabolism in ABC07.
Fig. 4: Put1 is a benzylpenicilloic-acid-hydrolyzing amidase.
Fig. 5: E. coli expression of penicillin amidase or the put operon gives significantly increased growth on penicillinoids.
Fig. 6: Schematics illustrating penicillin catabolic strategies.

Change history

  • 27 December 2018

    In the version of the article originally published, the x axis of the graph in Fig. 4d was incorrectly labeled as “Retention time (min)”. It should read “Reaction time (min)”. The ‘deceased’ footnote was also formatted incorrectly when published. The footnote text itself should include the name of co-author Tara A. Gianoulis in addition to the previous link to her name in the author list through footnote number 10. The errors have been corrected in the HTML and PDF versions of the article.


  1. 1.

    Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article  Google Scholar 

  3. 3.

    Crofts, T. S., Gasparrini, A. J. & Dantas, G. Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol. 15, 422–434 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Aust, M.-O. et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ. Pollut. 156, 1243–1251 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    Wright, P. M., Seiple, I. B. & Myers, A. G. The evolving role of chemical synthesis in antibacterial drug discovery. Angew. Chem. Int. Ed. Engl. 53, 8840–8869 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Pramer, D. & Starkey, R. L. Decomposition of streptomycin. Science 113, 127 (1951).

    CAS  Article  Google Scholar 

  8. 8.

    Kameda, Y., Kimura, Y., Toyoura, E. & Omori, T. A method for isolating bacteria capable of producing 6-aminopenicillanic acid from benzylpenillin. Nature 191, 1122–1123 (1961).

    CAS  Article  Google Scholar 

  9. 9.

    Abd-El-Malek, Y., Monib, M. & Hazem, A. Chloramphenicol, a simultaneous carbon and nitrogen source for a Streptomyces sp. from Egyptain soil. Nature 189, 775–776 (1961).

    CAS  Article  Google Scholar 

  10. 10.

    Johnsen, J. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Arch. Microbiol. 115, 271–275 (1977).

    CAS  Article  Google Scholar 

  11. 11.

    Beckman, W. & Lessie, T. G. Response of Pseudomonas cepacia to β-Lactam antibiotics: utilization of penicillin G as the carbon source. J. Bacteriol. 140, 1126–1128 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Johnsen, J. Presence of β-lactamase and penicillin acylase in a Pseudomonas sp. utilizing benzylpenicillin as a carbon source. J. Gen. Appl. Microbiol. 27, 499–503 (1981).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, P. et al. Characterization and mechanism analysis of penicillin G biodegradation with Klebsiella pneumoniae Z1 isolated from waste penicillin bacterial residue. J. Ind. Eng. Chem. 27, 50–58 (2015).

    Article  Google Scholar 

  14. 14.

    Barnhill, A. E., Weeks, K. E., Xiong, N., Day, T. A. & Carlson, S. A. Identification of multiresistant Salmonella isolates capable of subsisting on antibiotics. Appl. Environ. Microbiol. 76, 2678–2680 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Bello González, Tde.J., Zuidema, T., Bor, G., Smidt, H. & van Passel, M. W. Study of the aminoglycoside subsistence phenotype of bacteria residing in the gut of humans and zoo animals. Front. Microbiol. 6, 1550 (2016).

    Article  Google Scholar 

  17. 17.

    Xin, Z. et al. Isolation, identification and characterization of human intestinal bacteria with the ability to utilize chloramphenicol as the sole source of carbon and energy. FEMS Microbiol. Ecol. 82, 703–712 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Topp, E. et al. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. J. Environ. Qual. 42, 173–178 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Tappe, W. et al. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4, isolated from lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Appl. Environ. Microbiol. 79, 2572–2577 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Walsh, F., Amyes, S. G. B. & Duffy, B. Challenging the concept of bacteria subsisting on antibiotics. Int. J. Antimicrob. Agents 41, 558–563 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Crofts, T. S. et al. Draft genome sequences of three β-lactam-catabolizing soil Proteobacteria. Genome Announc. 5, e00653–17 (2017).

    Article  Google Scholar 

  22. 22.

    Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Bush, K. & Jacoby, G. A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Ghebre-Sellassie, I., Hem, S. L. & Knevel, A. M. Epimerization of benzylpenicilloic acid in alkaline media. J. Pharm. Sci. 73, 125–128 (1984).

    CAS  Article  Google Scholar 

  26. 26.

    Hmelo, L. R. et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 10, 1820–1841 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Valle, F., Balbás, P., Merino, E. & Bolivar, F. The role of penicillin amidases in nature and in industry. Trends Biochem. Sci. 16, 36–40 (1991).

    CAS  Article  Google Scholar 

  28. 28.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

    Article  Google Scholar 

  30. 30.

    Svedas, V., Guranda, D., van Langen, L., van Rantwijk, F. & Sheldon, R. Kinetic study of penicillin acylase from Alcaligenes faecalis. FEBS Lett. 417, 414–418 (1997).

    CAS  Article  Google Scholar 

  31. 31.

    Hammond, P. M., Price, C. P. & Scawen, M. D. Purification and properties of aryl acylamidase from Pseudomonas fluorescens ATCC 39004. Eur. J. Biochem. 132, 651–655 (1983).

    CAS  Article  Google Scholar 

  32. 32.

    Szewczuk, A., Siewiński, M. & Słowińska, R. Colorimetric assay of penicillin amidase activity using phenylacetyl-aminobenzoic acid as substrate. Anal. Biochem. 103, 166–169 (1980).

    CAS  Article  Google Scholar 

  33. 33.

    Oinonen, C. & Rouvinen, J. Structural comparison of Ntn-hydrolases. Protein Sci. 9, 2329–2337 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    McVey, C. E., Walsh, M. A., Dodson, G. G., Wilson, K. S. & Brannigan, J. A. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. J. Mol. Biol. 313, 139–150 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    McDonough, M. A., Klei, H. E. & Kelly, J. A. Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri. Protein Sci. 8, 1971–1981 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    Janes, L. E., Löwendahl, A. C. & Kazlauskas, R. J. Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. Chemistry 4, 2324–2331 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Batchelor, F. R., Chain, E. B., Hardy, T. L., Mansford, K. R. & Rolinson, G. N. 6-Aminopenicillanic acid. III. Isolation and purification. Proc. R. Soc. London. Ser. B, Biol. Sci. 154, 498–508 (1961).

    CAS  Google Scholar 

  38. 38.

    Margolin, A. L., Svedas, V. K. & Berezin, I. V. Substrate specificity of penicillin amidase from E. coli. Biochim. Biophys. Acta 616, 283–289 (1980).

    CAS  Article  Google Scholar 

  39. 39.

    Alkema, W. B., Floris, R. & Janssen, D. B. The use of chromogenic reference substrates for the kinetic analysis of penicillin acylases. Anal. Biochem. 275, 47–53 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    Henke, E. & Bornscheuer, U. T. Fluorophoric assay for the high-throughput determination of amidase activity. Anal. Chem. 75, 255–260 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Ferrández, A. et al. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J. Biol. Chem. 273, 25974–25986 (1998).

    Article  Google Scholar 

  42. 42.

    Schumacher, G., Sizmann, D., Haug, H., Buckel, P. & Böck, A. Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res. 14, 5713–5727 (1986).

    CAS  Article  Google Scholar 

  43. 43.

    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    CAS  Article  Google Scholar 

  44. 44.

    Larsson, D. G. J., de Pedro, C. & Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Yoneda, A., Wittmann, B. J., King, J. D., Blankenship, R. E. & Dantas, G. Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410. Photosynth. Res. 129, 171–182 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  49. 49.

    Habegger, L. et al. RSEQtools: a modular framework to analyze RNA-Seq data using compact, anonymized data summaries. Bioinformatics 27, 281–283 (2011).

    CAS  Article  Google Scholar 

  50. 50.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  Article  Google Scholar 

  53. 53.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    Gasteiger, E. et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

    CAS  Article  Google Scholar 

  56. 56.

    Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    CAS  Article  Google Scholar 

Download references


This work is supported in part by awards to G.D. through the Edward Mallinckrodt, Jr. Foundation (Scholar Award), and from the NIH Director’s New Innovator Award (, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK:, the National Institute of General Medical Sciences (NIGMS:, and the National Institute of Allergy and Infectious Diseases (NIAID: of the National Institutes of Health (NIH) under award numbers DP2DK098089, R01GM099538, and R01AI123394, respectively. T.S.C. received support from a National Institute of Diabetes and Digestive and Kidney Diseases Training Grant through award number T32 DK077653 (P.I. Tarr, Principal Investigator) and a National Institute of Child Health and Development Training Grant through award number T32 HD049305 (K.H. Moley, Principal Investigator). K.J.F. received support from the NHGRI Genome Analysis Training Program (T32 HG000045), the NIGMS Cellular and Molecular Biology Training Program (T32 GM007067), and the NSF as a graduate research fellow (award number DGE-1143954). M.K.G. received support as a Mr. and Mrs. Spencer T. Olin Fellow at Washington University and from the NSF as a graduate research fellow (DGE-1143954). Sequencing through the US Army Edgewood Chemical Biological Center was supported in part through funding provided by the Transformational Medical Technologies Initiative of the Defense Threat Reduction Agency, US Department of Defense. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. We are thankful to J. Hoisington-Lopez in the Center for Genome Sciences and Systems Biology at Washington University in St. Louis School of Medicine for Illumina sequencing support, T. Wencewicz and B. Evans for their useful discussions regarding biochemistry and LC–MS and members of the Dantas lab for general helpful discussions regarding the manuscript.

Author information




T.S.C., A.S., T.A.G., M.O.A.S., and G.D. conceived of experiments and design of work. T.S.C., B.W., A.S., and T.A.G. performed in vitro, microbial, and transcriptomic experiments. L.A.J., S.M.B., C.N.R., E.W.S., and H.S.G. sequenced strain genomes. T.S.C., A.S., T.A.G., K.J.F, and M.K.G. provided analyses. Article drafting was performed by T.S.C. with critical revision performed by T.S.C., B.W., A.S., K.J.F, M.K.G., M.O.A.S., and G.D.

Corresponding author

Correspondence to Gautam Dantas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4, Supplementary Figures 1–8

Reporting Summary

Supplementary Dataset 1

RNA-seq count dataset

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crofts, T.S., Wang, B., Spivak, A. et al. Shared strategies for β-lactam catabolism in the soil microbiome. Nat Chem Biol 14, 556–564 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing