Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases

Abstract

Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient N-linked glycosylation in vitro and in the Escherichia coli cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy for characterizing and designing glycosylation sites.
Fig. 2: GlycoSCORES workflow and application to X−1 and X+1 position screening of NGT substrates.
Fig. 3: Using GlycoSCORES to determine peptide specificity of human ppGalNAcTs.
Fig. 4: GlycoSCORES X+2, X−2, and X+3 position peptide specificity screening of NGT.
Fig. 5: In vitro synthesis and glycosylation of Im7 with GlycoSCORES-identified sequences.
Fig. 6: Site-directed cytoplasmic glycosylation of human Fc using GlycoSCORES optimized sequences.

Similar content being viewed by others

References

  1. Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 90 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  2. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sethuraman, N. & Stadheim, T. A. Challenges in therapeutic glycoprotein production. Curr. Opin. Biotechnol. 17, 341–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Elliott, S. et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21, 414–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, C.-W. et al. A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc. Natl Acad. Sci. USA 112, 10611–10616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clausen, H., Wandall, H.H., Steentoft, C., Stanley, P. & Schnaar, R.L. in Essentials of Glycobiology. (eds. A. Varki et al.) 713–728 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2015).

  8. Valderrama-Rincon, J. D. et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8, 434–436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keys, T. G. & Aebi, M. Engineering protein glycosylation in prokaryotes. Curr. Opin. Syst. Biol. 5, 23–31 (2017).

    Article  Google Scholar 

  10. Wang, L.-X. & Davis, B. G. Realizing the promise of chemical glycobiology. Chem. Sci. 4, 3381–3394 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, Z. et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol. 33, 842–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol. 24, 210–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y. et al. A novel enzymatic method for synthesis of glycopeptides carrying natural eukaryotic N-glycans. Chem. Commun. (Camb.) 53, 9075–9077 (2017).

    Article  CAS  Google Scholar 

  14. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Ban, L. et al. Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat. Chem. Biol. 8, 769–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pathak, S. et al. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nat. Struct. Mol. Biol. 22, 744–750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ortiz-Meoz, R. F., Merbl, Y., Kirschner, M. W. & Walker, S. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated. J. Am. Chem. Soc. 136, 4845–4848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, P. V., Tsai, C. T., de Groot, A. E., McKechnie, J. L. & Bertozzi, C. R. Glyco-seek: ultrasensitive detection of protein-specific glycosylation by proximity ligation polymerase chain reaction. J. Am. Chem. Soc. 138, 10722–10725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naegeli, A. et al. Substrate specificity of cytoplasmic N-glycosyltransferase. J. Biol. Chem. 289, 24521–24532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naegeli, A. et al. Molecular analysis of an alternative N-glycosylation machinery by functional transfer from Actinobacillus pleuropneumoniae to Escherichia coli. J. Biol. Chem. 289, 2170–2179 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Keys, T. G. et al. A biosynthetic route for polysialylating proteins in Escherichia coli. Metab. Eng. 44, 293–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Cuccui, J. et al. The N-linking glycosylation system from Actinobacillus pleuropneumoniae is required for adhesion and has potential use in glycoengineering. Open Biol. 7, 160212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwarz, F., Fan, Y. Y., Schubert, M. & Aebi, M. Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. J. Biol. Chem. 286, 35267–35274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song, Q. et al. Production of homogeneous glycoprotein with multi-site modifications by an engineered N-glycosyltransferase mutant. J. Biol. Chem. 292, 8856–8863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gross, J. et al. The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 283, 26010–26015 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawai, F. et al. Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. J. Biol. Chem. 286, 38546–38557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lomino, J. V. et al. A two-step enzymatic glycosylation of polypeptides with complex N-glycans. Bioorg. Med. Chem. 21, 2262–2270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, M. M., Glover, K. J. & Imperiali, B. From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46, 5579–5585 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Fisher, A. C. et al. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl. Environ. Microbiol. 77, 871–881 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Carlson, E. D., Gan, R., Hodgman, C. E. & Jewett, M. C. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Kuo, H. Y., DeLuca, T. A., Miller, W. M. & Mrksich, M. Profiling deacetylase activities in cell lysates with peptide arrays and SAMDI mass spectrometry. Anal. Chem. 85, 10635–10642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kornacki, J. R., Stuparu, A. D. & Mrksich, M. Acetyltransferase p300/CBP associated Factor (PCAF) regulates crosstalk-dependent acetylation of histone H3 by distal site recognition. ACS Chem. Biol. 10, 157–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J. & Mrksich, M. Profiling the selectivity of DNA ligases in an array format with mass spectrometry. Nucleic Acids Res. 38, e2 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Laurent, N. et al. Enzymatic glycosylation of peptide arrays on gold surfaces. ChemBioChem 9, 883–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laurent, N. et al. SPOT synthesis of peptide arrays on self-assembled monolayers and their evaluation as enzyme substrates. ChemBioChem 9, 2592–2596 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Hussain, M. R., Hoessli, D. C. & Fang, M. N-acetylgalactosaminyltransferases in cancer. Oncotarget 7, 54067–54081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schjoldager, K. T. et al. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proc. Natl Acad. Sci. USA 109, 9893–9898 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoshida, A., Suzuki, M., Ikenaga, H. & Takeuchi, M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J. Biol. Chem. 272, 16884–16888 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Gerken, T. A., Raman, J., Fritz, T. A. & Jamison, O. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. J. Biol. Chem. 281, 32403–32416 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Kong, Y. et al. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology 25, 55–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, A. C., Jensen, E. H., Rexach, J. E., Vinters, H. V. & Hsieh-Wilson, L. C. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc. Natl Acad. Sci. USA 113, 15120–15125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, X. et al. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase. FASEB J. 28, 3362–3372 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Chalkley, R. J., Thalhammer, A., Schoepfer, R. & Burlingame, A. L. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc. Natl Acad. Sci. USA 106, 8894–8899 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lazarus, M. B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi, K. J., Grass, S., Paek, S., St Geme, J. W. III & Yeo, H. J. The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin. PLoS One 5, e15888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haselberg, R., de Jong, G. J. & Somsen, G. W. Low-flow sheathless capillary electrophoresis-mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins. Anal. Chem. 85, 2289–2296 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Schoborg, J. A. et al. A cell-free platform for rapid synthesis and testing of active oligosaccharyltransferases. Biotechnol. Bioeng. 115, 739–750 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gurard-Levin, Z. A., Scholle, M. D., Eisenberg, A. H. & Mrksich, M. High-throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci. 13, 347–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goerke, A. R. & Swartz, J. R. Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol. Bioeng. 99, 351–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Martin, R. W. et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun9, 1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwon, Y.-C. & Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 5, 8663 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Jewett, M. C. & Swartz, J. R. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Jewett, M. C., Calhoun, K. A., Voloshin, A., Wuu, J. J. & Swartz, J. R. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol4, 220 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Jewett, M. C. & Swartz, J. R. Rapid expression and purification of 100 nmol quantities of active protein using cell-free protein synthesis. Biotechnol. Prog. 20, 102–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hong, S. H. et al. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol. 3, 398–409 (2014).

  61. Jian, W., Edom, R. W., Wang, D., Weng, N. & Zhang, S. W. Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography-high-resolution mass spectrometry. Anal. Chem. 85, 2867–2874 (2013).

Download references

Acknowledgements

The authors acknowledge J.C. Stark and J. Hershewe for assistance with western blotting, helpful discussions, and sharing of reagents and ideas; S. Habibi for assistance with LC-TOF instrumentation; and A. Karim for helpful conversations. The authors also thank J. Kath for supply of plasmids, advice on protein expression, and critical reading of the manuscript. We also thank A. Natarajan of the Department of Microbiology at Cornell University, T. Jaroentomeechai of the Robert Frederick Smith School of Chemical and Biomolecular Engineering at Cornell University, and J. Janetzko of the Department of Chemistry and Chemical Biology at Harvard University for sharing the ppGalNAcT, Im7, and hOGT source plasmids, respectively. This work made use of the Integrated Molecular Structure Education and Research Center at Northwestern University, which has received support from the state of Illinois, the Northwestern University Office of Research and the Chemistry Department for LC-TOF instrumentation. This material is based upon work supported by the Defense Threat Reduction Agency (HDTRA1-15-10052/P00001), the David and Lucile Packard Foundation, the Dreyfus Teacher-Scholar program, and the National Science Foundation (Graduate Research Fellowship under Grant No. DGE-1324585 and MCB-1413563).

Author information

Authors and Affiliations

Authors

Contributions

W.K. and L.L. designed, performed, and analyzed experiments. M.R. designed and optimized experimental protocols. W.L. helped to synthesize peptide libraries. M.M. and M.C.J. directed the studies and interpreted the data. W.K., L.L., M.P.D., M.M., and M.C.J. conceived of the study and wrote the manuscript with assistance from M.R. and W.L.

Corresponding authors

Correspondence to Milan Mrksich or Michael C. Jewett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Figures 1–27, Supplementary Note 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kightlinger, W., Lin, L., Rosztoczy, M. et al. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 14, 627–635 (2018). https://doi.org/10.1038/s41589-018-0051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0051-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing