Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of chalcone isomerase from a noncatalytic ancestor

A Publisher Correction to this article was published on 14 May 2018

This article has been updated

Abstract

The emergence of catalysis in a noncatalytic protein scaffold is a rare, unexplored event. Chalcone isomerase (CHI), a key enzyme in plant flavonoid biosynthesis, is presumed to have evolved from a nonenzymatic ancestor related to the widely distributed fatty-acid binding proteins (FAPs) and a plant protein family with no isomerase activity (CHILs). Ancestral inference supported the evolution of CHI from a protein lacking isomerase activity. Further, we identified four alternative founder mutations, i.e., mutations that individually instated activity, including a mutation that is not phylogenetically traceable. Despite strong epistasis in other cases of protein evolution, CHI’s laboratory reconstructed mutational trajectory shows weak epistasis. Thus, enantioselective CHI activity could readily emerge despite a catalytically inactive starting point. Accordingly, X-ray crystallography, NMR, and molecular dynamics simulations reveal reshaping of the active site toward a productive substrate-binding mode and repositioning of the catalytic arginine that was inherited from the ancestral fatty-acid binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CHI protein family.
Fig. 2: Isomerase activity of the inferred ancestors and evolutionary intermediates.
Fig. 3: Additivity versus epistasis along CHI’s evolution.
Fig. 4: The alternative random mutagenesis trajectory.
Fig. 5: Structural changes over the evolution.
Fig. 6: The conformational ensemble of the catalytic arginine changes over the evolution.

Similar content being viewed by others

Change history

  • 14 May 2018

    In the version of this article originally published, the number for the equal contributions footnote was missing for Miriam Kaltenbach and Jason R. Burke in the author list. The error has been corrected in the PDF and print versions of this article.

References

  1. Adrain, C. & Freeman, M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat. Rev. Mol. Cell Biol. 13, 489–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ortmayer, M. et al. An oxidative N-demethylase reveals PAS transition from ubiquitous sensor to enzyme. Nature 539, 593–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Taga, M. E., Larsen, N. A., Howard-Jones, A. R., Walsh, C. T. & Walker, G. C. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446, 449–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tam, R. & Saier, M. H. Jr. A bacterial periplasmic receptor homologue with catalytic activity: cyclohexadienyl dehydratase of Pseudomonas aeruginosa is homologous to receptors specific for polar amino acids. Res. Microbiol. 144, 165–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Yuhara, K., Yonehara, H., Hattori, T., Kobayashi, K. & Kirimura, K. Enzymatic characterization and gene identification of aconitate isomerase, an enzyme involved in assimilation of trans-aconitic acid, from Pseudomonas sp. WU-0701. FEBS J. 282, 4257–4267 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Koes, R. E., Quattrocchio, F. & Mol, J. N. M. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16, 123–132 (1994).

    Article  CAS  Google Scholar 

  7. Ngaki, M. N. et al. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485, 530–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morita, Y. et al. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant J. 78, 294–304 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, W. et al. Role of a chalcone isomerase-like protein in flavonoid biosynthesis in Arabidopsis t haliana. J. Exp. Bot. 66, 7165–7179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jez, J. M., Bowman, M. E. & Noel, J. P. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochemistry 41, 5168–5176 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Bar-Rogovsky, H. et al. Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Eng. Des. Sel. 28, 507–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Eick, G. N., Bridgham, J. T., Anderson, D. P., Harms, M. J. & Thornton, J. W. Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol. Biol. Evol. 34, 247–261 (2017).

    CAS  PubMed  Google Scholar 

  14. Randall, R. N., Radford, C. E., Roof, K. A., Natarajan, D. K. & Gaucher, E. A. An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat. Commun. 7, 12847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 3, 1257 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Breen, M. S., Kemena, C., Vlasov, P. K., Notredame, C. & Kondrashov, F. A. Epistasis as the primary factor in molecular evolution. Nature 490, 535–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. de Visser, J. A., Cooper, T. F. & Elena, S. F. The causes of epistasis. Proc. Biol. Sci. 278, 3617–3624 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harms, M. J. & Thornton, J. W. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 14, 559–571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaltenbach, M. & Tokuriki, N. Dynamics and constraints of enzyme evolution. J. Exp. Zool. B Mol. Dev. Evol. 322, 468–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. McCandlish, D. M., Rajon, E., Shal, P., Ding, Y. & Plotkin, J. B. The role of epistasis in protein evolution. Nature 497, E1–2; discussion E2–3 (2013).

    Google Scholar 

  21. Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Whitlock, M. C., Phillips, P. C., Moore, F. B.-G. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).

    Article  Google Scholar 

  23. Salverda, M. L. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kaltenbach, M., Jackson, C. J., Campbell, E. C., Hollfelder, F. & Tokuriki, N. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence. eLife 4, e06492 (2015).

    Article  PubMed Central  Google Scholar 

  26. Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, K. M. & Liu, D. R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl Acad. Sci. USA 110, 9007–9012 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jez, J. M., Bowman, M. E., Dixon, R. A. & Noel, J. P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7, 786–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Farrow, N. A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Thomsen, M. et al. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallogr. D Biol. Crystallogr. 71, 907–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gumulya, Y. & Gillam, E. M. Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem. J. 474, 1–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. New Phytol. 187, 273–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Bar-Even, A. & Salah Tawfik, D. Engineering specialized metabolic pathways-is there a room for enzyme improvements? Curr. Opin. Biotechnol. 24, 310–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Keller, M. A., Piedrafita, G. & Ralser, M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr. Opin. Biotechnol. 34, 153–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trudeau, D. L., Kaltenbach, M. & Tawfik, D. S. On the potential origins of the high stability of reconstructed ancestral proteins. Mol. Biol. Evol. 33, 2633–2641 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Noor, S. et al. Intramolecular epistasis and the evolution of a new enzymatic function. PLoS One 7, e39822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lozovsky, E. R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl. Acad. Sci. USA 106, 12025–12030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Edn. Engl. 52, 5700–5725 (2013).

    Article  CAS  Google Scholar 

  38. Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Lassila, J. K. Conformational diversity and computational enzyme design. Curr. Opin. Chem. Biol. 14, 676–682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl Acad. Sci. USA 109, 10358–10363 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Armougom, F. et al. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 34, W604–W608 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Cronk, Q. C. Plant evolution and development in a post-genomic context. Nat. Rev. Genet. 2, 607–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ashkenazy, H. et al. FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res. 40, W580–W584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miranda, C. L. et al. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 48, 3876–3884 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Ashkenazy, H. et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Herman, A. & Tawfik, D. S. Incorporating synthetic oligonucleotides via gene reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng. Des. Sel. 20, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, H., Giver, L., Shao, Z., Affholter, J. A. & Arnold, F. H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Battye, T. G. et al. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Google Scholar 

  56. van den Bedem, H., Dhanik, A., Latombe, J. C. & Deacon, A. M. Modeling discrete heterogeneity in X-ray diffraction data by fitting multi-conformers. Acta Crystallogr. D Biol. Crystallogr. 65, 1107–1117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goddard, T. D. & Kneller, D. G. Sparky 3. (University of California, San Francisco, 2008).

    Google Scholar 

  58. Bieri, M., d’Auvergne, E. J. & Gooley, P. R. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and µs motion of proteins. J. Biomol. NMR 50, 147–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Fiser, A. & Sali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pK a values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Case, D. A. et al. AMBER 2016. (University of California, San Francisco, 2016).

    Google Scholar 

  63. Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, J. et al. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Frisch, M. J. et al. Gaussian 09, Revision D.01. (Gaussian, Inc., Wallingford, CT, 2016).

    Google Scholar 

  66. Cieplak, P., Cornell, W. D., Bayly, C. & Kollman, P. A. Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 16, 1357–1377 (1995).

    Article  CAS  Google Scholar 

  67. Jorgensen, W. L. et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  68. Berendsen, H. J. C. et al. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  69. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    Article  CAS  Google Scholar 

  70. Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

  71. Darden, T., York, D. & Pederson, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  72. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–38 (1996).

    Article  Google Scholar 

  73. McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.-P. Cherukuri for help with the synthesis of chalconaringenin, B. Duggan and X. Huang for assistance with NMR, G. Louie for assistance with protein X-ray data collection and processing, and G. Cortina for help with analyzing the simulations. This work was funded by the Israel Science Foundation Grant 980/14 and the Sasson & Marjorie Peress Philanthropic Fund (D.S.T.); the United States National Science Foundation grant EEC-0813570 (J.P.N.); the Knut and Alice Wallenberg Foundation, Wenner-Gren Foundations and the European Research Council (S.C.L.K.). Computer time was provided by the Swedish National Infrastructure for Computing. J.P.N. is the Arthur and Julie Woodrow Chair and a Howard Hughes Medical Institute investigator. D.S.T. is the Nella and Leon Benoziyo Professor of Biochemistry.

Author information

Authors and Affiliations

Authors

Contributions

M.K. performed ancestral inference with assistance from A.R. M.K. performed directed evolution. M.K., M.D., and J.R.B. performed mutagenesis, protein expression, stable isotope labeling, and biochemical characterization of the proteins. J.R.B., M.K., D.S.T. and J.P.N. performed and analyzed protein X-ray crystallography and NMR. A.P. and S.C.L.K. performed and analyzed MD simulations with assistance from F.S.M. D.S.T. and J.P.N. planned and directed the project, and, together with M.K., J.R.B., A.P., and S.C.L.K., designed the experiments. M.K., J.R.B., J.P.N. and D.S.T. wrote and edited the manuscript.

Corresponding authors

Correspondence to Joseph P. Noel or Dan S. Tawfik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–12, Supplementary Figures 1– 20 and Supplementary Notes 1– 3

Reporting Summary

Supplementary Dataset 1

>AUGV-6826_P_4dokB

Supplementary Dataset 2

Posterior probabilities P(amino acid) in ancestral reconstruction including indels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltenbach, M., Burke, J.R., Dindo, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat Chem Biol 14, 548–555 (2018). https://doi.org/10.1038/s41589-018-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0042-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing