Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase

Abstract

Living organisms have evolved mechanisms for adjusting their metabolism to adapt to environmental nutrient availability. Terrestrial animals utilize the ornithine–urea cycle to dispose of excess nitrogen derived from dietary protein. Here, we identified an active ornithine–ammonia cycle (OAC) in cyanobacteria through an approach combining dynamic 15N and 13C tracers, metabolomics, and mathematical modeling. The pathway starts with carbamoyl phosphate synthesis by the bacterial- and plant-type glutamine-dependent enzyme and ends with conversion of arginine to ornithine and ammonia by a novel arginine dihydrolase. An arginine dihydrolase–deficient mutant showed disruption of OAC and severely impaired cell growth when nitrogen availability oscillated. We demonstrated that the OAC allows for rapid remobilization of nitrogen reserves under starvation and a high rate of nitrogen assimilation and storage after the nutrient becomes available. Thus, the OAC serves as a conduit in the nitrogen storage-and-remobilization machinery in cyanobacteria and enables cellular adaptation to nitrogen fluctuations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell growth and metabolomic response to nitrate upshift.
Fig. 2: Identification of active cycling between ornithine and arginine.
Fig. 3: Deletion of argZ results in arginine accumulation.
Fig. 4: Characterization of the arginine dihydrolase ArgZ.
Fig. 5: OAC couples with the GS–GOGAT cycle and PPC reaction.
Fig. 6: Comparison between the OAC and the OUC.

Similar content being viewed by others

References

  1. Jenkinson, C. P., Grody, W. W. & Cederbaum, S. D. Comparative properties of arginases. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 114, 107–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Mommsen, T. P. & Walsh, P. J. Evolution of urea synthesis in vertebrates: the piscine connection. Science 243, 72–75 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Allen, A. E. et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473, 203–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Cunin, R., Glansdorff, N., Piérard, A. & Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50, 314–352 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Winter, G., Todd, C. D., Trovato, M., Forlani, G. & Funck, D. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6, 534 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium: a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Flores, E. & Herrero, A. Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem. Soc. Trans. 33, 164–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, R. & Forchhammer, K. Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151, 2503–2514 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Allen, M. M. Inclusions: cyanophycin. Methods Enzymol. 167, 207–213 (1988).

    Article  CAS  Google Scholar 

  11. Burnat, M., Herrero, A. & Flores, E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc. Natl Acad. Sci. USA 111, 3823–3828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H., Sherman, D. M., Bao, S. & Sherman, L. A. Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria. Arch. Microbiol. 176, 9–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Finzi-Hart, J. A. et al. Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. Proc. Natl Acad. Sci. USA 106, 6345–6350 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wegener, K. M. et al. Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol. Cell. Proteomics 9, 2678–2689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osanai, T. et al. Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ. Microbiol. 16, 512–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Klotz, A. et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr. Biol. 26, 2862–2872 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Simons, M. et al. Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J. Exp. Bot. 65, 5657–5671 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Masakapalli, S. K., Kruger, N. J. & Ratcliffe, R. G. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. Plant J. 74, 569–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Junker, B. H., Lonien, J., Heady, L. E., Rogers, A. & Schwender, J. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochemistry 68, 2232–2242 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Yuan, J., Bennett, B. D. & Rabinowitz, J. D. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat. Protoc. 3, 1328–1340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Heerden, J. H. et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343, 1245114 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Buescher, J. M. et al. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335, 1099–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Link, H., Kochanowski, K. & Sauer, U. Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nat. Biotechnol. 31, 357–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, Y. F., Amador-Noguez, D., Reaves, M. L., Feng, X. J. & Rabinowitz, J. D. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nat. Chem. Biol. 8, 562–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan, J. & Rabinowitz, J. D. Differentiating metabolites formed from de novo synthesis versus macromolecule decomposition. J. Am. Chem. Soc. 129, 9294–9295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishihara, H., Obata, T., Sulpice, R., Fernie, A. R. & Stitt, M. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiol. 168, 74–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schriek, S., Rückert, C., Staiger, D., Pistorius, E. K. & Michel, K. P. Bioinformatic evaluation of l-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of l-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics 8, 437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Delannay, S. et al. Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways. J. Mol. Biol. 286, 1217–1228 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Maheswaran, M., Urbanke, C. & Forchhammer, K. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942. J. Biol. Chem. 279, 55202–55210 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Orr, J. & Haselkorn, R. Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J. Biol. Chem. 256, 13099–13104 (1981).

    CAS  PubMed  Google Scholar 

  32. Miller, R. E. & Stadtman, E. R. Glutamate synthase from Escherichia coli: an iron-sulfide flavoprotein. J. Biol. Chem. 247, 7407–7419 (1972).

    CAS  PubMed  Google Scholar 

  33. Zehr, J. P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 19, 162–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Stöckel, J. et al. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc. Natl Acad. Sci. USA 105, 6156–6161 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Allen, M. M., Hutchison, F. & Weathers, P. J. Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. J. Bacteriol. 141, 687–693 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Takiguchi, M., Matsubasa, T., Amaya, Y. & Mori, M. Evolutionary aspects of urea cycle enzyme genes. BioEssays 10, 163–166 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton, T. L., Bryant, D. A. & Macalady, J. L. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ. Microbiol. 18, 325–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  41. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).

    Article  Google Scholar 

  42. Reddy, K. J., Haskell, J. B., Sherman, D. M. & Sherman, L. A. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175, 1284–1292 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, X. et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ. Sci. 9, 1400–1411 (2016).

    Article  CAS  Google Scholar 

  44. Rabinowitz, J. D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Tautenhahn, R. et al. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30, 826–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golden, S. S., Brusslan, J. & Haselkorn, R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 153, 215–231 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, D. & Yang, C. The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 289, 2055–2071 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Tocilj, A. et al. Crystal structure of N-succinylarginine dihydrolase AstB, bound to substrate and product, an enzyme from the arginine catabolic pathway of Escherichia coli. J. Biol. Chem. 280, 15800–15808 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Young, J. D., Shastri, A. A., Stephanopoulos, G. & Morgan, J. A. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab. Eng. 13, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hörl, M., Schnidder, J., Sauer, U. & Zamboni, N. Non-stationary 13C-metabolic flux ratio analysis. Biotechnol. Bioeng. 110, 3164–3176 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Shan for technical assistance on hybrid quadrupole-orbitrap MS and J. Zhao for helpful discussions. This work was funded for C.Y. by the National Natural Science Foundation of China (31630003 and 31470168), the National Key R&D Program of China (2016YFC1303303), and the Chinese Academy of Sciences (XDPB0400).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. performed most experiments and wrote the manuscript. Y.L. conducted biochemical assays. X.N. performed bioinformatics. L.L. contributed LC–MS analysis. Q.H. contributed mathematical modeling. G.-P.Z. contributed experimental design and discussion. C.Y. designed experiments, analyzed data, and wrote the manuscript.

Corresponding author

Correspondence to Chen Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Nie, X. et al. The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase. Nat Chem Biol 14, 575–581 (2018). https://doi.org/10.1038/s41589-018-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0038-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing