Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells

A Correction to this article was published on 04 May 2018

This article has been updated

Abstract

Regeneration of the adult intestinal epithelium is mediated by a pool of cycling stem cells, which are located at the base of the crypt, that express leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5). The Frizzled (FZD) 7 receptor (FZD7) is enriched in LGR5+ intestinal stem cells and plays a critical role in their self-renewal. Yet, drug discovery approaches and structural bases for targeting specific FZD isoforms remain poorly defined. FZD proteins interact with Wnt signaling proteins via, in part, a lipid-binding groove on the extracellular cysteine-rich domain (CRD) of the FZD receptor. Here we report the identification of a potent peptide that selectively binds to the FZD7 CRD at a previously uncharacterized site and alters the conformation of the CRD and the architecture of its lipid-binding groove. Treatment with the FZD7-binding peptide impaired Wnt signaling in cultured cells and stem cell function in intestinal organoids. Together, our data illustrate that targeting the lipid-binding groove holds promise as an approach for achieving isoform-selective FZD receptor inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peptide Fz7-21 impairs Wnt signaling and selectively binds to the FZD7 receptor subclass.
Fig. 2: A novel peptide-binding site proximal to the lipid-binding cavity on the hFZD7 CRD.
Fig. 3: Structure–activity relationship of Fz7-21 peptide binding to the FZD7 CRD receptor subclass.
Fig. 4: Peptide dFz7-21 disrupts WNT3A–FZD7–LRP6 ternary complex formation.
Fig. 5: dFz7-21 disrupts stem cell function in intestinal organoids.
Fig. 6: Model of dFz7-21 mechanism of inhibition of FZD7 receptor subclass.

Similar content being viewed by others

Change history

  • 04 May 2018

    The version of this article originally published contained older versions of the Life Sciences Reporting Summary and the Supplementary Text and Figures. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Mariadason, J. M. et al. Gene expression profiling of intestinal epithelial cell maturation along the crypt–villus axis. Gastroenterology 128, 1081–1088 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Flanagan, D. J. et al. Frizzled 7 functions as a Wnt receptor in intestinal epithelial LGR5+ stem cells. Stem Cell Rep. 4, 759–767 (2015).

    Article  CAS  Google Scholar 

  4. Fernandez, A. et al. The Wnt receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 111, 1409–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vincan, E. & Barker, N. The upstream components of the Wnt signaling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin. Exp. Metastasis 25, 657–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Phesse, T., Flanagan, D. & Vincan, E. Frizzled 7: a promising Achilles’ heel for targeting the Wnt receptor complex to treat cancer. Cancers 8, E50 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Tiwary, S. & Xu, L. Frizzled 7 is required for tumor initiation and metastatic growth of melanoma cells. PLoS One 11, e0147638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anastas, J. N. et al. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J. Clin. Invest. 124, 2877–2890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nile, A. H. & Hannoush, R. N. Fatty acylation of Wnt proteins. Nat. Chem. Biol. 12, 60–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4, 1–13 (2012).

    Article  CAS  Google Scholar 

  12. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang, X., Charlat, O., Zamponi, R., Yang, Y. & Cong, F. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3 and RNF43 E3 ubiquitin ligases. Mol. Cell 58, 522–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Koo, B. K. et al. Tumor suppressor RNF43 is a stem cell E3 ligase that induces endocytosis of Wnt receptors. Nature 488, 665–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, X. et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl. Acad. Sci. USA 110, 12649–12654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koo, B.-K., van Es, J. H., van den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutated neoplasia. Proc. Natl. Acad. Sci. USA 112, 7548–7550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dijksterhuis, J. P. et al. Systematic mapping of Wnt–FZD protein interactions reveals functional selectivity by distinct Wnt–FZD pairs. J. Biol. Chem. 290, 6789–6798 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, H. J. et al. Structure-based discovery of novel small-molecule Wnt signaling inhibitors by targeting the cysteine-rich domain of Frizzled. J. Biol. Chem. 290, 30596–30606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurney, A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA 109, 11717–11722 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hannoush, R. N. Kinetics of Wnt-driven β-catenin stabilization revealed by quantitative and temporal imaging. PLoS One 3, e3498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meijer, L. et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10, 1255–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Steinhart, Z. et al. Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutated pancreatic tumors. Nat. Med. 23, 60–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Nile, A. H., Mukund, S., Stanger, K., Wang, W. & Hannoush, R. N. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc. Natl. Acad. Sci. USA 114, 4147–4152 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dann, C. E. et al. Insights into Wnt binding and signaling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Shen, G. et al. Structural basis of the norrin–Frizzled 4 interaction. Cell Res. 25, 1078–1081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bourhis, E. et al. Reconstitution of a Frizzled 8–WNT3A–LRP6 signaling complex reveals multiple Wnt and DKK1 binding sites on LRP6. J. Biol. Chem. 285, 9172–9179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Grabinger, T. et al. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5, e1228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Janda, C. Y. et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signaling. Nature 545, 234–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voloshanenko, O., Gmach, P., Winter, J., Kranz, D. & Boutros, M. Mapping of Wnt–Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J. 31, 4832–4844 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Najdi, R. et al. A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation 84, 203–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian, H. et al. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep. 11, 33–42 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stanger, K. et al. Allosteric peptides bind a caspase zymogen and mediate caspase tetramerization. Nat. Chem. Biol. 8, 655–660 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Tonikian, R., Zhang, Y., Boone, C. & Sidhu, S. S. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat. Protoc. 2, 1368–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y. et al. Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat. Chem. Biol. 5, 217–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blessing, R. H. An empirical correction for absorption anisotropy. Acta Crystallogr. A 51, 33–38 (1995).

    Article  PubMed  Google Scholar 

  41. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley Interscience, New York, 1986).

  47. Güntert, P. & Buchner, L. Combined automated NOE assignment and structure calculation with CYANA. J. Biomol. NMR 62, 453–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  49. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  50. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, T. et al. Single LGR5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. de Sousa e Melo, F. et al. A distinct role for LGR5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ritchie, M. E. et al. limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srinivasan, K. et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat. Commun. 7, 11295 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yaari, G., Bolen, C. R., Thakar, J. & Kleinstein, S. H. Quantitative set analysis for gene expression: a method to quantify gene set differential expression including gene–gene correlations. Nucleic Acids Res. 41, e170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, T.-H. et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from LGR5+ intestinal stem cells. Cell Rep. 16, 2053–2060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Ferrao for assistance with collecting the crystallographic dataset, S. Gierke for help with microscopy, A. Estevez, C. Ciferri, K. Mortara and the Baculovirus expression group for assistance with protein expression, R. Ferrao and D. Whalen for helpful discussions, and the Genentech FACS core for technical assistance. Molecular graphics and analyses were performed with the UCSF Chimera package. Chimera was developed by the Resource for Biocomputing, Visualization and Informatics at the University of California, San Francisco (supported by US National Institutes of Health (NIH)-NIGMS grant no. P41-GM103311).

Author information

Authors and Affiliations

Authors

Contributions

A.H.N., F.d.S.e.M., S.M., R.P., S.H., L.Z., Y.Z., Y.F., E.B.G., Z.M., S.A., Y.F., C.K., W.J.F., W.W., F.J.d.S. and R.N.H. designed research; A.H.N. performed protein purification and characterization, and biochemical and cellular assays; F.d.S.e.M. performed organoid assays; S.M. performed crystallography experiments; S.H. performed SPR experiments; L.Z. performed phage panning; Y.F. designed expression constructs; E.B.G. and R.N.H. performed cellular assays; L.G.K. performed confocal microscopy; A.H.N. and W.W. solved the X-ray crystal structure; R.P. analyzed the RNA-seq data; A.H.N. and R.N.H. wrote the manuscript, with input from the other authors; and R.N.H. conceived and directed the study.

Corresponding author

Correspondence to Rami N. Hannoush.

Ethics declarations

Competing interests

The authors are employees of Genentech, a member of the Roche group. A patent (PCT/US2017/050841; A.H.N., Y.Z., L.Z., and R.N.H.) covering this work is pending.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figures 1–25

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nile, A.H., de Sousa e Melo, F., Mukund, S. et al. A selective peptide inhibitor of Frizzled 7 receptors disrupts intestinal stem cells. Nat Chem Biol 14, 582–590 (2018). https://doi.org/10.1038/s41589-018-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0035-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing