Profiling and genetic control of the murine immunoglobulin G glycome


Immunoglobulin G (IgG) glycosylation is essential for function of the immune system, but the genetic and environmental factors that underlie its inter-individual variability are not well defined. The Collaborative Cross (CC) genetic resource harnesses over 90% of the common genetic variation of the mouse. By analyzing the IgG glycome composition of 95 CC strains, we made several important observations: (i) glycome variation between mouse strains was higher than between individual humans, despite all mice having the same environmental influences; (ii) five genetic loci were found to be associated with murine IgG glycosylation; (iii) variants outside traditional glycosylation site motifs affected glycome variation; (iv) bisecting N-acetylglucosamine (GlcNAc) was produced by several strains although most previous studies have reported the absence of glycans containing the bisecting GlcNAc on murine IgGs; and (v) common laboratory mouse strains are not optimal animal models for studying effects of glycosylation on IgG function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Representative overlaid chromatograms of mouse and human IgG glycans separated by UPLC.
Fig. 2: Variation in the levels of individual IgG glycans between different strains of mice.
Fig. 3: Sex-dependent differences in the levels of individual IgG glycans.
Fig. 4: LC-MS glycopeptide data plotted versus UPLC glycan data.
Fig. 5: QTL mapping of glycosylation traits.


  1. 1.

    Schroeder, H. W. J. Jr. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125 (Suppl. 2), S41–S52 (2010).

    Article  Google Scholar 

  2. 2.

    Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Quast, I. et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125, 4160–4170 (2015).

    Article  Google Scholar 

  4. 4.

    Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Masuda, K. et al. Enhanced binding affinity for FcγRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol. Immunol. 44, 3122–3131 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Ruhaak, L. R. et al. The serum immunoglobulin G glycosylation signature of gastric cancer. EuPA Open Proteom. 6, 1–9 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Saldova, R. et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology 17, 1344–1356 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    Vučković, F. et al. IgG glycome in colorectal cancer. Clin. Cancer Res. 22, 3078–3086 (2016).

    Article  Google Scholar 

  9. 9.

    Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    CAS  Article  Google Scholar 

  10. 10.

    Trbojević Akmačić, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015).

    Google Scholar 

  11. 11.

    Vučković, F. et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 67, 2978–2989 (2015).

    Article  Google Scholar 

  12. 12.

    Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell. Proteomics 13, 3029–3039 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Krištić, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).

    Article  Google Scholar 

  14. 14.

    Krištić, J., Zoldoš, V. & Lauc, G. in Glycoscience: Biology and Medicine (ed. Endo, T. et al.) 1–7 (Springer Japan, Tokyo, 2014).

  15. 15.

    Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Menni, C. et al. Glycosylation of immunoglobulin G: role of genetic and epigenetic influences. PLoS One 8, e82558 (2013).

    Article  Google Scholar 

  17. 17.

    Pucic, M. et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell. Proteomics 10, M111.010090 (2011).

    Article  Google Scholar 

  18. 18.

    Blomme, B. et al. Alterations of serum protein N-glycosylation in two mouse models of chronic liver disease are hepatocyte and not B cell driven. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G833–G842 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Maresch, D. & Altmann, F. Isotype-specific glycosylation analysis of mouse IgG by LC-MS. Proteomics 16, 1321–1330 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Raju, T. S., Briggs, J. B., Borge, S. M. & Jones, A. J. S. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10, 477–486 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Mizuochi, T., Hamako, J. & Titani, K. Structures of the sugar chains of mouse immunoglobulin G. Arch. Biochem. Biophys. 257, 387–394 (1987).

    CAS  Article  Google Scholar 

  22. 22.

    Mahan, A. E. et al. A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis. J. Immunol. Methods 417, 34–44 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Morahan, G., Balmer, L. & Monley, D. Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes. Mamm. Genome 19, 390–393 (2008).

    Article  Google Scholar 

  24. 24.

    Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    Ferguson, B. et al. Melanoma susceptibility as a complex trait: genetic variation controls all stages of tumor progression. Oncogene 34, 2879–2886 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Everest-Dass, A. V., Abrahams, J. L., Kolarich, D., Packer, N. H. & Campbell, M. P. Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J. Am. Soc. Mass Spectrom. 24, 895–906 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Baković, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

    Article  Google Scholar 

  28. 28.

    de Haan, N. et al. The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front. Immunol. 8, 608 (2017).

    Article  Google Scholar 

  29. 29.

    Knežević, A. et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20, 959–969 (2010).

    Article  Google Scholar 

  30. 30.

    Luan, J. J. et al. Defective Fc gamma RII gene expression in macrophages of NOD mice: genetic linkage with up-regulation of IgG1 and IgG2b in serum. J. Immunol. 157, 4707–4716 (1996).

    CAS  Google Scholar 

  31. 31.

    Natsuume-Sakai, S., Motonishi, K. & Migita, S. Quantitative estimations of five classes of immunoglobulin in inbred mouse strains. Immunology 32, 861–866 (1977).

    CAS  Google Scholar 

  32. 32.

    Nairn, A. V. et al. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298–17313 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Yamamoto-Hino, M. et al. Identification of genes required for neural-specific glycosylation using functional genomics. PLoS Genet. 6, e1001254 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Huffman, J. E. et al. Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum. Mol. Genet. 20, 5000–5011 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Lauc, G. et al. Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 6, e1001256 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Takahashi, M., Kuroki, Y., Ohtsubo, K. & Taniguchi, N. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr. Res. 344, 1387–1390 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Davies, J. et al. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 74, 288–294 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Longmore, G. D. & Schachter, H. Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-β-d-glucoside (FUC→Asn-linked GlcNAc) 6-α-l-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr. Res. 100, 365–392 (1982).

    CAS  Article  Google Scholar 

  39. 39.

    Bodman, K. B. et al. IgG glycosylation in autoimmune-prone strains of mice. Clin. Exp. Immunol. 95, 103–107 (1994).

    CAS  Article  Google Scholar 

  40. 40.

    Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    De Martinis, M., Franceschi, C., Monti, D. & Ginaldi, L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 579, 2035–2039 (2005).

    Article  Google Scholar 

  42. 42.

    Bennett, B. J. et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 20, 281–290 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Ugrina, I., Campbell, H. & Vučković, F. Laboratory experimental design for a glycomic study. Methods Mol. Biol. 1503, 13–19 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Cooper, C. A., Gasteiger, E. & Packer, N. H. GlycoMod–a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1, 340–349 (2001).

    CAS  Article  Google Scholar 

  45. 45.

    Ceroni, A. et al. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008).

    CAS  Article  Google Scholar 

  46. 46.

    Pezer, M. et al. Effects of allergic diseases and age on the composition of serum IgG glycome in children. Sci. Rep. 6, 33198 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Selman, M. H. J. et al. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J. Proteomics 75, 1318–1329 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Jansen, B. C. et al. LaCyTools: a targeted liquid chromatography-mass spectrometry data processing package for relative quantitation of glycopeptides. J. Proteome Res. 15, 2198–2210 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Ram, R., Mehta, M., Balmer, L., Gatti, D. M. & Morahan, G. Rapid identification of major-effect genes using the collaborative cross. Genetics 198, 75–86 (2014).

    Article  Google Scholar 

  50. 50.

    Cheng, R., Abney, M., Palmer, A. A. & Skol, A. D. QTLRel: an R package for genome-wide association studies in which relatedness is a concern. BMC Genet. 12, 66 (2011).

    Article  Google Scholar 

Download references


We thank Geniad Pty Ltd for generously providing CC mice and genotypes. This project was supported in part by the WA Diabetes Research Foundation (to G.M.), Program 1037321 (to G.M.) and Project 1069173 (to G.M.) from the National Health and Medical Research Council of Australia and by European Commission FP7 grants MIMOmics (contract 305280 to G.L.) and H2020 projects GlySign (contract 722095 to G.L.), SYSCID (contract #733100 to G.L.) and IMforFuture (contract 721815 to G.L.), as well as by the European Structural and Investment Funds IRI (grant KK. to G.L.) and Croatian National Centre of Research Excellence in Personalized Healthcare (grant KK. to G.L.).

Author information




Q.N., K.M.D. and G.M. provided samples; J.K., O.O.Z., I.T.-A., M.N., M.P., G.M. and G.L. planned experiments; J.K., M.N., M.V. and O.O.Z. performed experiments; R.R., O.O.Z. and F.V. analyzed data; J.K., G.M. and G.L. wrote the manuscript.

Corresponding author

Correspondence to Gordan Lauc.

Ethics declarations

Competing interests

G.L. is founder and owner of Genos Ltd, which specializes in high-throughput glycomics analysis and has several patents in the field. G.M. holds stock in Geniad Pty Ltd.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–8

Life Sciences Reporting Summary

Supplementary Dataset 1

List of candidate genes involved in the regulation of mouse IgG glycosylation identified from the QTL analysis.

Supplementary Dataset 2

Strain, sex and age of mice.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krištić, J., Zaytseva, O.O., Ram, R. et al. Profiling and genetic control of the murine immunoglobulin G glycome. Nat Chem Biol 14, 516–524 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing