Subjects

Abstract

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).

  2. 2.

    Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

  3. 3.

    Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33, 147–156 (2016).

  4. 4.

    Staswick, P. E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

  5. 5.

    Fonseca, S. et al. (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

  6. 6.

    Wasternack, C. How jasmonates earned their laurels: past and present. J. Plant Growth Regul. 34, 761–794 (2015).

  7. 7.

    Pratiwi, P. et al. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol. 58, 789–801 (2017).

  8. 8.

    Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

  9. 9.

    Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

  10. 10.

    Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

  11. 11.

    Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

  12. 12.

    Yan, J. et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236 (2009).

  13. 13.

    Pauwels, L. et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788–791 (2010).

  14. 14.

    Zhang, F. et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269–273 (2015).

  15. 15.

    Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

  16. 16.

    Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).

  17. 17.

    Han, G. Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 68, 1323–1331 (2017).

  18. 18.

    Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304.e15 (2017).

  19. 19.

    Záveská Drábková, L., Dobrev, P. I. & Motyka, V. Phytohormone profiling across the Bryophytes. PLoS One 10, e0125411 (2015).

  20. 20.

    Oliver, J. P. et al. Pythium infection activates conserved plant defense responses in mosses. Planta 230, 569–579 (2009).

  21. 21.

    Ponce de León, I., Hamberg, M. & Castresana, C. Oxylipins in moss development and defense. Front. Plant Sci. 6, 483 (2015).

  22. 22.

    Ludwig-Müller, J., Jülke, S., Bierfreund, N. M., Decker, E. L. & Reski, R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol. 181, 323–338 (2009).

  23. 23.

    Stumpe, M. et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188, 740–749 (2010).

  24. 24.

    Yamamoto, Y. et al. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116, 48–56 (2015).

  25. 25.

    Koeduka, T. et al. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 242, 1175–1186 (2015).

  26. 26.

    Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

  27. 27.

    Koo, A. J. K., Gao, X., Jones, A. D. & Howe, G. A. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974–986 (2009).

  28. 28.

    Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007).

  29. 29.

    Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S. & Kohchi, T. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3, 1532 (2013).

  30. 30.

    Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).

  31. 31.

    Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

  32. 32.

    Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014).

  33. 33.

    Kubota, A., Ishizaki, K., Hosaka, M. & Kohchi, T. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77, 167–172 (2013).

  34. 34.

    Sakuma, T., Nishikawa, A., Kume, S., Chayama, K. & Yamamoto, T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 4, 5400 (2014).

  35. 35.

    Park, J.-H. et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1–12 (2002).

  36. 36.

    Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994).

  37. 37.

    Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y. & Howe, G. A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl Acad. Sci. USA 105, 7100–7105 (2008).

  38. 38.

    Hong, F. et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22, 2825–2827 (2006).

  39. 39.

    Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl Acad. Sci. USA 98, 12837–12842 (2001).

  40. 40.

    Godoy, M. et al. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Plant J. 66, 700–711 (2011).

  41. 41.

    Zhang, L. et al. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc. Natl Acad. Sci. USA 112, 14354–14359 (2015).

  42. 42.

    Weber, H., Vick, B. A. & Farmer, E. E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl Acad. Sci. USA 94, 10473–10478 (1997).

  43. 43.

    Kajikawa, M. et al. MpFAE3, a beta-ketoacyl-CoA synthase gene in the liverwort Marchantia polymorpha L., is preferentially involved in elongation of palmitic acid to stearic acid. Biosci. Biotechnol. Biochem. 67, 1667–1674 (2003).

  44. 44.

    Chini, A. et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 14, 171–178 (2018).

  45. 45.

    Li, H. et al. Efficient ASK-assisted system for expression and purification of plant F-box proteins. Plant J. 92, 736–743 (2017).

  46. 46.

    Li, W. et al. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol. Biol. 9, 90 (2009).

  47. 47.

    Li, Q. et al. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol. Plant 10, 695–708 (2017).

  48. 48.

    Bozorov, T. A., Dinh, S. T. & Baldwin, I. T. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. J. Integr. Plant Biol. 59, 552–571 (2017).

  49. 49.

    Staswick, P. E. et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627 (2005).

  50. 50.

    Weng, J.-K., Ye, M., Li, B. & Noel, J. P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881–893 (2016).

  51. 51.

    Ishizaki, K. et al. Development of gateway binary vector series with four different selection markers for the liverwort marchantia polymorpha. PLoS One 10, e0138876 (2015).

  52. 52.

    Fonseca, S. & Solano, R. in Jasmonate Signaling: Methods and Protocols (eds. Goossens, A. & Pauwels, L.) 159–171 (Humana Press, 2013).

  53. 53.

    Chini, A. in Plant Chemical Genomics: Methods and Protocols (eds. Hicks, G. R. & Robert, S.) 35–43 (Humana Press, 2014).

  54. 54.

    Chini, A., Fonseca, S., Chico, J. M., Fernández-Calvo, P. & Solano, R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77–87 (2009).

  55. 55.

    Monte, I. et al. Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10, 671–676 (2014).

  56. 56.

    Soukas, A., Cohen, P., Socci, N. D. & Friedman, J. M. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 14, 963–980 (2000).

  57. 57.

    Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

  58. 58.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  59. 59.

    Medina-Rivera, A. et al. RSAT 2015: regulatory sequence analysis tools. Nucleic Acids Res. 43, W50–W56 (2015).

  60. 60.

    Floková, K. et al. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana—The identification of cis-(+)-OPDA-Ile. Phytochemistry 122, 230–237 (2016).

Download references

Acknowledgements

We thank J. Paz-Ares and members of Solano's lab for critical reading of the manuscript and C. Mark for English editing. We thank K. Inoue (Kyoto University) for vector construction and assistance with CRISPR–Cas9D10A cloning. We also thank H. Matsuura (Hokkaido Univ.) for assistance with OPDA synthesis. J. Langdale (Oxford University) kindly provided Anthoceros agrestis and B. Benito (CBGP-UPM-INIA) Physcomitrella patens. E.E. Farmer (University of Lausanne) kindly provided Methyl-dn-OPDA and M. Alfonso (EEAD-CSIC) provided dn-OPDA. L. Colombo (University of Milan) kindly provided pTFT vector. This work was funded by the Spanish Ministry for Science and Innovation grant BIO2016-77216-R (MINECO/FEDER). I.M. was supported by a predoctoral fellowship from the Ministerio de Educación, Spain (grant AP2010-1410) and EMBO Short Term Fellowship (ASTF 385-2013). This work was partly supported by MEXT KAKENHI Grant Numbers JP15K21758 and JP25113009 to TK. P.R and C.G.-D. are funded by the Swiss National Science Foundation Grant Nr. 31003A_169278

Author information

Affiliations

  1. Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain

    • Isabel Monte
    •  & Roberto Solano
  2. Graduate School of Biostudies, Kyoto University, Kyoto, Japan

    • Sakiko Ishida
    • , Ryuichi Nishihama
    •  & Takayuki Kohchi
  3. Environmental Biology Department, University of Navarra, Navarra, Spain

    • Angel M. Zamarreño
    •  & José M. García-Mina
  4. Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

    • Mats Hamberg
  5. Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain

    • José M. Franco-Zorrilla
    •  & Gloria García-Casado
  6. Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland

    • Caroline Gouhier-Darimont
    •  & Philippe Reymond
  7. Research Faculty of Agriculture, Division of Applied Bioscience, Hokkaido University, Sapporo, Japan

    • Kosaku Takahashi

Authors

  1. Search for Isabel Monte in:

  2. Search for Sakiko Ishida in:

  3. Search for Angel M. Zamarreño in:

  4. Search for Mats Hamberg in:

  5. Search for José M. Franco-Zorrilla in:

  6. Search for Gloria García-Casado in:

  7. Search for Caroline Gouhier-Darimont in:

  8. Search for Philippe Reymond in:

  9. Search for Kosaku Takahashi in:

  10. Search for José M. García-Mina in:

  11. Search for Ryuichi Nishihama in:

  12. Search for Takayuki Kohchi in:

  13. Search for Roberto Solano in:

Contributions

I.M. and R.S. designed the experiments. I.M. performed experiments in Figs. 1,2,4 and 6 and Supplementary Figs. 1, 2, 3a, 4, 5, 6, 7 and 9 and prepared the samples for experiments in Figs. 3 and 5 and Supplementary Fig. 8. S.I. identified Mpcoi1-1. A.M.Z. quantified oxylipins (Figs. 1 and 5 and Supplementary Figs. 1 and 8). M.H. synthesized all chemicals described in Methods. J.M.F.-Z. designed and analyzed microarray data. G.G.-C. performed gene expression analysis. C.G.-D. performed insect feeding assays. P.R. designed, supervised and analyzed insect feeding assays. K.T. synthesized OPDA and OPDA-Ile. J.M.G.-M. designed and supervised LC–MS experiments. R.N. and T.K. designed and supervised homologous recombination and CRISPR experiments to obtain Mpcoi1 mutants. R.S. supervised the work. I.M and R.S. wrote the manuscript. All authors discussed the results and edited the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Roberto Solano.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figure 1–10, Table 1–2

  2. Life Sciences Reporting Summary

  3. Supplementary Note 1

    Chemical synthesis

  4. Supplementary Data Set 1

    Relative expression values (Log2 ratio) of the genes included in the clustering analysis shown in Figure 3b

  5. Supplementary Data Set 2

    Enriched Gene Ontology (GO) terms based on Marchantia annotations of the gene clusters shown in Figure 3b

  6. Supplementary Data Set 3

    Enriched Gene Ontology (GO) terms based on the Arabidopsis orthologues of genes shown in clusters in Figure 3b

Source data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41589-018-0033-4