Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-receptor co-evolution shaped the jasmonate pathway in land plants

Abstract

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MpCOI1 regulates responses to OPDA.
Fig. 2: AtCOI1 complements the Mpcoi1-1 mutant and confers JA-Ile/COR responsiveness to M. polymorpha.
Fig. 3: AtCOI1 complements Mpcoi1 insensitivity to OPDA-induced gene expression.
Fig. 4: A single amino acid of COI1 determines ligand specificity.
Fig. 5: OPDA is a precursor of dinor-OPDA and both accumulate after wounding.
Fig. 6: dinor-OPDA is the bioactive ligand of MpCOI1 in M. polymorpha.

Similar content being viewed by others

References

  1. Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).

    Article  CAS  Google Scholar 

  2. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

    Article  CAS  Google Scholar 

  3. Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33, 147–156 (2016).

    Article  CAS  Google Scholar 

  4. Staswick, P. E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

    Article  CAS  Google Scholar 

  5. Fonseca, S. et al. (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

    Article  CAS  Google Scholar 

  6. Wasternack, C. How jasmonates earned their laurels: past and present. J. Plant Growth Regul. 34, 761–794 (2015).

    Article  CAS  Google Scholar 

  7. Pratiwi, P. et al. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol. 58, 789–801 (2017).

    Article  Google Scholar 

  8. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Article  CAS  Google Scholar 

  9. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  Google Scholar 

  10. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  Google Scholar 

  11. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  Google Scholar 

  12. Yan, J. et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236 (2009).

    Article  CAS  Google Scholar 

  13. Pauwels, L. et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788–791 (2010).

    Article  CAS  Google Scholar 

  14. Zhang, F. et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269–273 (2015).

    Article  CAS  Google Scholar 

  15. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article  CAS  Google Scholar 

  16. Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).

    Article  Google Scholar 

  17. Han, G. Z. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 68, 1323–1331 (2017).

    Google Scholar 

  18. Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304.e15 (2017).

    Article  CAS  Google Scholar 

  19. Záveská Drábková, L., Dobrev, P. I. & Motyka, V. Phytohormone profiling across the Bryophytes. PLoS One 10, e0125411 (2015).

    Article  Google Scholar 

  20. Oliver, J. P. et al. Pythium infection activates conserved plant defense responses in mosses. Planta 230, 569–579 (2009).

    Article  CAS  Google Scholar 

  21. Ponce de León, I., Hamberg, M. & Castresana, C. Oxylipins in moss development and defense. Front. Plant Sci. 6, 483 (2015).

    Google Scholar 

  22. Ludwig-Müller, J., Jülke, S., Bierfreund, N. M., Decker, E. L. & Reski, R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol. 181, 323–338 (2009).

    Article  Google Scholar 

  23. Stumpe, M. et al. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol. 188, 740–749 (2010).

    Article  CAS  Google Scholar 

  24. Yamamoto, Y. et al. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116, 48–56 (2015).

    Article  CAS  Google Scholar 

  25. Koeduka, T. et al. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 242, 1175–1186 (2015).

    Article  CAS  Google Scholar 

  26. Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).

    Article  CAS  Google Scholar 

  27. Koo, A. J. K., Gao, X., Jones, A. D. & Howe, G. A. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J. 59, 974–986 (2009).

    Article  CAS  Google Scholar 

  28. Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007).

    Article  CAS  Google Scholar 

  29. Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S. & Kohchi, T. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3, 1532 (2013).

    Article  Google Scholar 

  30. Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).

    Article  CAS  Google Scholar 

  31. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  Google Scholar 

  32. Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014).

    Article  CAS  Google Scholar 

  33. Kubota, A., Ishizaki, K., Hosaka, M. & Kohchi, T. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77, 167–172 (2013).

    Article  CAS  Google Scholar 

  34. Sakuma, T., Nishikawa, A., Kume, S., Chayama, K. & Yamamoto, T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 4, 5400 (2014).

    Article  CAS  Google Scholar 

  35. Park, J.-H. et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31, 1–12 (2002).

    Article  Google Scholar 

  36. Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994).

    Article  CAS  Google Scholar 

  37. Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y. & Howe, G. A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl Acad. Sci. USA 105, 7100–7105 (2008).

    Article  CAS  Google Scholar 

  38. Hong, F. et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22, 2825–2827 (2006).

    Article  CAS  Google Scholar 

  39. Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl Acad. Sci. USA 98, 12837–12842 (2001).

    Article  CAS  Google Scholar 

  40. Godoy, M. et al. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Plant J. 66, 700–711 (2011).

    Article  CAS  Google Scholar 

  41. Zhang, L. et al. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc. Natl Acad. Sci. USA 112, 14354–14359 (2015).

    Article  CAS  Google Scholar 

  42. Weber, H., Vick, B. A. & Farmer, E. E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl Acad. Sci. USA 94, 10473–10478 (1997).

    Article  CAS  Google Scholar 

  43. Kajikawa, M. et al. MpFAE3, a beta-ketoacyl-CoA synthase gene in the liverwort Marchantia polymorpha L., is preferentially involved in elongation of palmitic acid to stearic acid. Biosci. Biotechnol. Biochem. 67, 1667–1674 (2003).

    Article  CAS  Google Scholar 

  44. Chini, A. et al. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 14, 171–178 (2018).

    Article  CAS  Google Scholar 

  45. Li, H. et al. Efficient ASK-assisted system for expression and purification of plant F-box proteins. Plant J. 92, 736–743 (2017).

    Article  CAS  Google Scholar 

  46. Li, W. et al. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol. Biol. 9, 90 (2009).

    Article  Google Scholar 

  47. Li, Q. et al. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol. Plant 10, 695–708 (2017).

    Article  CAS  Google Scholar 

  48. Bozorov, T. A., Dinh, S. T. & Baldwin, I. T. JA but not JA-Ile is the cell-nonautonomous signal activating JA mediated systemic defenses to herbivory in Nicotiana attenuata. J. Integr. Plant Biol. 59, 552–571 (2017).

    Article  CAS  Google Scholar 

  49. Staswick, P. E. et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627 (2005).

    Article  CAS  Google Scholar 

  50. Weng, J.-K., Ye, M., Li, B. & Noel, J. P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881–893 (2016).

    Article  CAS  Google Scholar 

  51. Ishizaki, K. et al. Development of gateway binary vector series with four different selection markers for the liverwort marchantia polymorpha. PLoS One 10, e0138876 (2015).

    Article  Google Scholar 

  52. Fonseca, S. & Solano, R. in Jasmonate Signaling: Methods and Protocols (eds. Goossens, A. & Pauwels, L.) 159–171 (Humana Press, 2013).

  53. Chini, A. in Plant Chemical Genomics: Methods and Protocols (eds. Hicks, G. R. & Robert, S.) 35–43 (Humana Press, 2014).

  54. Chini, A., Fonseca, S., Chico, J. M., Fernández-Calvo, P. & Solano, R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J. 59, 77–87 (2009).

    Article  CAS  Google Scholar 

  55. Monte, I. et al. Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10, 671–676 (2014).

    Article  CAS  Google Scholar 

  56. Soukas, A., Cohen, P., Socci, N. D. & Friedman, J. M. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 14, 963–980 (2000).

    CAS  Google Scholar 

  57. Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    Article  Google Scholar 

  58. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

  59. Medina-Rivera, A. et al. RSAT 2015: regulatory sequence analysis tools. Nucleic Acids Res. 43, W50–W56 (2015).

    Article  CAS  Google Scholar 

  60. Floková, K. et al. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana—The identification of cis-(+)-OPDA-Ile. Phytochemistry 122, 230–237 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Paz-Ares and members of Solano's lab for critical reading of the manuscript and C. Mark for English editing. We thank K. Inoue (Kyoto University) for vector construction and assistance with CRISPR–Cas9D10A cloning. We also thank H. Matsuura (Hokkaido Univ.) for assistance with OPDA synthesis. J. Langdale (Oxford University) kindly provided Anthoceros agrestis and B. Benito (CBGP-UPM-INIA) Physcomitrella patens. E.E. Farmer (University of Lausanne) kindly provided Methyl-dn-OPDA and M. Alfonso (EEAD-CSIC) provided dn-OPDA. L. Colombo (University of Milan) kindly provided pTFT vector. This work was funded by the Spanish Ministry for Science and Innovation grant BIO2016-77216-R (MINECO/FEDER). I.M. was supported by a predoctoral fellowship from the Ministerio de Educación, Spain (grant AP2010-1410) and EMBO Short Term Fellowship (ASTF 385-2013). This work was partly supported by MEXT KAKENHI Grant Numbers JP15K21758 and JP25113009 to TK. P.R and C.G.-D. are funded by the Swiss National Science Foundation Grant Nr. 31003A_169278

Author information

Authors and Affiliations

Authors

Contributions

I.M. and R.S. designed the experiments. I.M. performed experiments in Figs. 1,2,4 and 6 and Supplementary Figs. 1, 2, 3a, 4, 5, 6, 7 and 9 and prepared the samples for experiments in Figs. 3 and 5 and Supplementary Fig. 8. S.I. identified Mpcoi1-1. A.M.Z. quantified oxylipins (Figs. 1 and 5 and Supplementary Figs. 1 and 8). M.H. synthesized all chemicals described in Methods. J.M.F.-Z. designed and analyzed microarray data. G.G.-C. performed gene expression analysis. C.G.-D. performed insect feeding assays. P.R. designed, supervised and analyzed insect feeding assays. K.T. synthesized OPDA and OPDA-Ile. J.M.G.-M. designed and supervised LC–MS experiments. R.N. and T.K. designed and supervised homologous recombination and CRISPR experiments to obtain Mpcoi1 mutants. R.S. supervised the work. I.M and R.S. wrote the manuscript. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Roberto Solano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–10, Table 1–2

Life Sciences Reporting Summary

Supplementary Note 1

Chemical synthesis

Supplementary Data Set 1

Relative expression values (Log2 ratio) of the genes included in the clustering analysis shown in Figure 3b

Supplementary Data Set 2

Enriched Gene Ontology (GO) terms based on Marchantia annotations of the gene clusters shown in Figure 3b

Supplementary Data Set 3

Enriched Gene Ontology (GO) terms based on the Arabidopsis orthologues of genes shown in clusters in Figure 3b

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monte, I., Ishida, S., Zamarreño, A.M. et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol 14, 480–488 (2018). https://doi.org/10.1038/s41589-018-0033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0033-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing