Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands

This article has been updated

Abstract

The addressable pocket of a protein is often not functionally relevant in disease. This is true for the multidomain, bromodomain-containing transcriptional regulator TRIM24. TRIM24 has been posited as a dependency in numerous cancers, yet potent and selective ligands for the TRIM24 bromodomain do not exert effective anti-proliferative responses. We therefore repositioned these probes as targeting features for heterobifunctional protein degraders. Recruitment of the VHL E3 ubiquitin ligase by dTRIM24 elicits potent and selective degradation of TRIM24. Using dTRIM24 to probe TRIM24 function, we characterize the dynamic genome-wide consequences of TRIM24 loss on chromatin localization and gene control. Further, we identify TRIM24 as a novel dependency in acute leukemia. Pairwise study of TRIM24 degradation versus bromodomain inhibition reveals enhanced anti-proliferative response from degradation. We offer dTRIM24 as a chemical probe of an emerging cancer dependency, and establish a path forward for numerous selective yet ineffectual ligands for proteins of therapeutic interest.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design and chemical characterization of dTRIM24 as a degrader of TRIM24.
Fig. 2: Characterization of the cellular mechanism of degradation of dTRIM24.
Fig. 3: Genetic dependency on TRIM24 in acute leukemia.
Fig. 4: Antiproliferative effect of selective TRIM24 degradation in acute leukemia.
Fig. 5: Global displacement of TRIM24 from chromatin and transcriptional response to TRIM24 degradation.

Change history

  • 08 August 2018

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.

References

  1. Bradner, J. E., Hnisz, D. & Young, R. A. Transcriptional addiction in cancer. Cell 168, 629–643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Darnell, J. E. Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer. Res. 75, 3865–3878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. BioEssays 27, 1147–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140–2151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allton, K. et al. Trim24 targets endogenous p53 for degradation. Proc. Natl. Acad. Sci. USA 106, 11612–11616 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain, A. K., Allton, K., Duncan, A. D. & Barton, M. C. TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol. Cell. Biol. 34, 2695–2709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khetchoumian, K. et al. Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat. Genet. 39, 1500–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Le Douarin, B. et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15, 6701–6715 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsai, W. W. et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 468, 927–932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cui, Z. et al. TRIM24 overexpression is common in locally advanced head and neck squamous cell carcinoma and correlates with aggressive malignant phenotypes. PLoS ONE 8, e63887 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Groner, A. C. et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell 29, 846–858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, H. et al. Overexpression of TRIM24 correlates with tumor progression in non-small cell lung cancer. PLoS ONE 7, e37657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X. et al. Overexpression of TRIM24 is associated with the onset and progress of human hepatocellular carcinoma. PLoS ONE 9, e85462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, J. et al. Knockdown of tripartite motif containing 24 by lentivirus suppresses cell growth and induces apoptosis in human colorectal cancer cells. Oncol. Res. 22, 39–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pathiraja, T. N. et al. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells. Oncogene 34, 2836–2845 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Bennett, J. et al. Discovery of a chemical tool inhibitor targeting the bromodomains of TRIM24 and BRPF. J. Med. Chem. 59, 1642–1647 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Palmer, W. S. et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. 59, 1440–1454 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhan, Y. et al. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin 8, 37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Winter, G. E. et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zengerle, M., Chan, K.-H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crews, C. M. et al. Compounds and methods for the inhibition of vcb e3 ubiquitin ligase. Patent WO 2013106646 (2013).

  28. Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, H.-T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Douglass, E. F. Jr, Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl. Acad. Sci. USA 108, 12372–12377 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shao, D. D. et al. ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens. Genome Res. 23, 665–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. Eng. 56, 5738–5743 (2017).

    Article  CAS  Google Scholar 

  37. Orlando, D. A. et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herquel, B. et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 108, 8212–8217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Herquel, B. et al. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat. Struct. Mol. Biol. 20, 339–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Tisserand, J. et al. Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition. J. Biol. Chem. 286, 33369–33379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaboli, M. et al. Mzf1 controls cell proliferation and tumorigenesis. Genes Dev. 15, 1625–1630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grossmann, V. et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 118, 6153–6163 (2011).

  44. Kewitz, S. & Staege, M. S. Expression and regulation of the endogenous retrovirus 3 in Hodgkin’s lymphoma cells. Front. Oncol. 3, 179 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lasorella, A., Benezra, R. & Iavarone, A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat. Rev. Cancer 14, 77–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Love, C. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat. Genet. 44, 1321–1325 (2012).

  47. Perrotti, D. et al. Overexpression of the zinc finger protein MZF1 inhibits hematopoietic development from embryonic stem cells: correlation with negative regulation of CD34 and c-myb promoter activity. Mol. Cell. Biol. 15, 6075–6087 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Richter, J. et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 44, 1316–1320 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. et al., Model-based analysis of ChIP-Seq, Genome Biol. 9, R137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Bradner and Gray labs for engaging scientific conversations. We also thank J. Wang (Dana-Farber Cancer Institute) for her help with chemical characterization. Lastly, we would like to thank S.A. Armstrong and K. Stegmaier (Dana-Farber Cancer Institute) for kindly providing us with materials. This research was supported by a Starr Cancer Consortium Grant (J.E.B.) and NIH/NCI P01CA066996 (J.E.B.). L.N.G is supported by an NSF GRFP fellowship (2016222867). D.L.B. was supported by the Claudia Adams Barr Program in Innovative Basic Cancer Research and is a Merck Fellow of the Damon Runyon Cancer Research Foundation (DRG-2196-14). Quantitative proteomics studies were performed by R. Kunz of the Thermo Fisher Scientific Center for Multiplexed Proteomics at Harvard Medical School.

Author information

Authors and Affiliations

Authors

Contributions

L.N.G. designed and performed experiments, analyzed data, and wrote the manuscript. D.L.B. designed experiments, designed and synthesized molecules, and edited the manuscript. M.A.L. performed ChIP-Rx and analyzed genomic data. J.M.R. analyzed genomic data. J.P., C.J.O., and T.G.S. designed and performed biochemical assays. G.E.W. and M.A.E. designed and performed CRISPR–Cas9 screens. M.X. performed computational and statistical analyses. S.D.-P. and H.-S.S. performed structural analysis. N.P.K. guided experimental analyses. J.A.P. provided technical advice and data interpretation and edited the manuscript. J.Q. aided in the formulation of the chemical degradation strategy. J.E.B. and N.S.G. designed the experimental strategy, wrote the manuscript, and held overall responsibility for the study.

Corresponding authors

Correspondence to Nathanael S. Gray or James E. Bradner.

Ethics declarations

Competing interests

D.L.B. and J.P. are now employees of Novartis. N.S.G. is a Scientific Founder and member of the Scientific Advisory Board of C4 Therapeutics. J.E.B. is a Scientific Founder of C4 Therapeutics. J.E.B. is now an executive and shareholder in Novartis AG.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Note

Life Sciences Reporting Summary

Supplementary Dataset 1

dTRIM24 proteomics MCF-7

Supplementary Dataset 2

dTRIM24 proteomics MOLM-13

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gechijian, L.N., Buckley, D.L., Lawlor, M.A. et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol 14, 405–412 (2018). https://doi.org/10.1038/s41589-018-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0010-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing