Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lanthipeptide library used to identify a protein–protein interaction inhibitor

This article has been updated

Abstract

In this article we describe the production and screening of a genetically encoded library of 106 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein–protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product–like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative illustration of lanthipeptide biosynthesis.
Fig. 2: Identifying a lanthipeptide inhibitor of the p6–UEV PPI.
Fig. 3: Assessing the activity of XY3-3 in vitro.
Fig. 4: Cellular activity of XY3-3-Tat.

Similar content being viewed by others

Change history

  • 08 August 2018

    In the version of this article originally published, numbered compounds were not linked correctly to their respective compound pages. The error has been corrected in the HTML version of this paper.

References

  1. Marsault, E. & Peterson, M. L. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J. Med. Chem. 54, 1961–2004 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cardote, T. A. & Ciulli, A. Cyclic and macrocyclic peptides as chemical tools to recognise protein surfaces and probe protein-protein interactions. Chem. Med. Chem 11, 787–794 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Gao, M., Cheng, K. & Yin, H. Targeting protein-protein interfaces using macrocyclic peptides. Biopolymers 104, 310–316 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lennard, K. R. & Tavassoli, A. Peptides come round: using SICLOPPS libraries for early stage drug discovery. Chemistry 20, 10608–10614 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Heinis, C., Rutherford, T., Freund, S. & Winter, G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 5, 502–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Miranda, E. et al. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135, 10418–10425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Passioura, T., Katoh, T., Goto, Y. & Suga, H. Selection-based discovery of druglike macrocyclic peptides. Annu. Rev. Biochem. 83, 727–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Birts, C. N. et al. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem. Sci. 4, 3046–3057 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Tavassoli, A. SICLOPPS cyclic peptide libraries in drug discovery. Curr. Opin. Chem. Biol. 38, 30–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ortega, M. A. & van der Donk, W. A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem. Biol. 23, 31–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuipers, O. P. et al. Protein engineering of lantibiotics. Antonie van Leeuwenhoek 69, 161–169 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Cotter, P. D. et al. Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol. Microbiol. 62, 735–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pavlova, O., Mukhopadhyay, J., Sineva, E., Ebright, R. H. & Severinov, K. Systematic structure-activity analysis of microcin J25. J. Biol. Chem. 283, 25589–25595 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Islam, M. R. et al. Evaluation of essential and variable residues of nukacin ISK-1 by NNK scanning. Mol. Microbiol. 72, 1438–1447 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Pan, S. J. & Link, A. J. Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J. Am. Chem. Soc. 133, 5016–5023 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Young, T. S., Dorrestein, P. C. & Walsh, C. T. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Chem. Biol. 19, 1600–1610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, F. & Kelly, W. L. In vivo production of thiopeptide variants. Methods Enzymol. 516, 3–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Boakes, S. et al. Generation of an actagardine A variant library through saturation mutagenesis. Appl. Microbiol. Biotechnol. 95, 1509–1517 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Deane, C. D., Melby, J. O., Molohon, K. J., Susarrey, A. R. & Mitchell, D. A. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem. Biol. 8, 1998–2008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weiz, A. R. et al. Harnessing the evolvability of tricyclic microviridins to dissect protease-inhibitor interactions. Angew. Chem. Int. Ed. Engl. 53, 3735–3738 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Houssen, W. E. et al. An efficient method for the in vitro production of azol(in)e-based cyclic peptides. Angew. Chem. Int. Ed. Engl. 53, 14171–14174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruffner, D. E., Schmidt, E. W. & Heemstra, J. R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol. 4, 482–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Repka, L. M., Chekan, J. R., Nair, S. K. & van der Donk, W. A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 117, 5457–5520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc. Natl. Acad. Sci. USA 107, 10430–10435 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tang, W. & van der Donk, W. A. Structural characterization of four prochlorosins: a novel class of lantipeptides produced by planktonic marine cyanobacteria. Biochemistry 51, 4271–4279 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, Y., Mukherjee, S. & van der Donk, W. A. Product formation by the promiscuous lanthipeptide synthetase ProcM is under kinetic control. J. Am. Chem. Soc. 137, 5140–5148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giordanetto, F. & Kihlberg, J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J. Med. Chem. 57, 278–295 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Foster, A. D. et al. Methods for the creation of cyclic peptide libraries for use in lead discovery. J. Biomol. Screen. 20, 563–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Quartararo, J. S. et al. A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. Bioorg. Med. Chem. 22, 6387–6391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tavassoli, A. et al. Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction. ACS Chem. Biol. 3, 757–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, Y., Yang, X., Garg, N. & Van Der Donk, W. A. Production of lantipeptides in Escherichia coli. J. Am. Chem. Soc. 133, 2338–2341 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl. Acad. Sci. USA 98, 7724–7729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Male, A. L. et al. Targeting Bacillus anthracis toxicity with a genetically selected inhibitor of the PA/CMG2 protein-protein interaction. Sci. Rep. 7, 3104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Im, Y. J. et al. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 18, 1536–1547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pornillos, O., Alam, S. L., Davis, D. R. & Sundquist, W. I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1p6 protein. Nat. Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  42. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morris, C. R., Stanton, M. J., Manthey, K. C., Oh, K. B. & Wagner, K. U. A knockout of the Tsg101 gene leads to decreased expression of ErbB receptor tyrosine kinases and induction of autophagy prior to cell death. PLoS One 7, e34308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruland, J. et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc. Natl. Acad. Sci. USA 98, 1859–1864 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl. Acad. Sci. USA 100, 7626–7631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jencks, W. P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78, 4046–4050 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knappe, T. A. et al. Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew. Chem. Int. Ed. Engl. 50, 8714–8717 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Conibear, A. C. et al. Approaches to the stabilization of bioactive epitopes by grafting and peptide cyclization. Biopolymers 106, 89–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Rink, R. et al. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods 61, 210–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17, 857–872 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Eyckerman for pMET7-GAG-EGFP (via Addgene, plasmid # 80605), and D. Gomez-Nicola for HEK239T cells. This work was supported by the National Institutes of Health (R37 GM 058822 to W.A.V.; F32 GM0112284 to M.C.W.), Cancer Research UK (A20185 to A.T.), and the Engineering and Physical Sciences Research Council and C4X Drug Discovery (EP/L505067/1, Ph.D. studentship for K.R.L. to A.T.), AstraZeneca (Ph.D. studentship for A.T.B. to A.T.) and the Southampton University Institute for Life Sciences (studentship for C.D. to A.T.).

Author information

Authors and Affiliations

Authors

Contributions

X.Y., A.T. and W.A.v.d.D. designed the study. X.Y., K.R.L., C.H., A.T.B. and C.D. performed all experiments. M.C.W. provided bioinformatics analysis of the plasmid library. All authors analyzed the data. X.Y., A.T. and W.A.v.d.D. wrote the manuscript.

Corresponding authors

Correspondence to Ali Tavassoli or Wilfred A. van der Donk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4, Supplementary Figures 1–19

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lennard, K.R., He, C. et al. A lanthipeptide library used to identify a protein–protein interaction inhibitor. Nat Chem Biol 14, 375–380 (2018). https://doi.org/10.1038/s41589-018-0008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0008-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing