Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases

A Publisher Correction to this article was published on 08 March 2018

This article has been updated


Sugar O-methylation shields algal polysaccharides against microbial hydrolytic enzymes. Here, we describe cytochrome P450 monooxygenases from marine bacteria that, together with appropriate redox-partner proteins, catalyze the oxidative demethylation of 6-O-methyl-d-galactose, which is an abundant monosaccharide of the algal polysaccharides agarose and porphyran. This previously unknown biological function extends the group of carbohydrate-active enzymes to include the class of cytochrome P450 monooxygenases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic analysis of conserved marine P450 monooxygenases.
Fig. 2: Characterization of the cytochrome P450 monooxygenases.

Similar content being viewed by others

Change history

  • 08 March 2018

    In the version of this article originally published, the line of conditions shown for NADH in Figure 2b was shifted out of place. The error has been corrected in the HTML and PDF versions of the article.


  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Science 281, 237–240 (1998).

    Article  CAS  Google Scholar 

  2. Kraan, S. in Carbohydrates–Comprehensive Studies on Glycobiology and Glycotechnology (ed. Chang, C.-F.) Ch. 22 (INTECH Open Access Publisher, 2012).

  3. Wargacki, A. J. et al. Science 335, 308–313 (2012).

    Article  CAS  Google Scholar 

  4. Motone, K., Takagi, T., Sasaki, Y., Kuroda, K. & Ueda, M. J. Biotechnol. 231, 129–135 (2016).

    Article  CAS  Google Scholar 

  5. Panagiotopoulos, C., Repeta, D. J., Mathieu, L., Rontani, J. F. & Sempéré, R. Mar. Chem. 154, 34–45 (2013).

    Article  CAS  Google Scholar 

  6. Gabrielii, I., Gatenholm, P., Glasser, W. G., Jain, R. K. & Kenne, L. Carbohydr. Polym. 43, 367–374 (2000).

    Article  CAS  Google Scholar 

  7. Hehemann, J. H., Kelly, A. G., Pudlo, N. A., Martens, E. C. & Boraston, A. B. Proc. Natl. Acad. Sci. USA 109, 19786–19791 (2012).

    Article  CAS  Google Scholar 

  8. Rees, D. A. & Conway, E. Biochem. J. 84, 411–416 (1962).

    Article  CAS  Google Scholar 

  9. Chiovitti, A., Bacic, A., Craik, D. J., Kraft, G. T. & Liao, M. L. Carbohydr. Res. 339, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  10. Guengerich, F. P. Chem. Res. Toxicol. 14, 611–650 (2001).

    Article  CAS  Google Scholar 

  11. Lewis, J. C. et al. Proc. Natl. Acad. Sci. USA 106, 16550–16555 (2009).

    Article  CAS  Google Scholar 

  12. Katagiri, M., Ganguli, B. N. & Gunsalus, I. C. J. Biol. Chem. 243, 3543–3546 (1968).

    CAS  Google Scholar 

  13. Janusz, G., Kucharzyk, K. H., Pawlik, A., Staszczak, M. & Paszczynski, A. J. Enzyme Microb. Technol. 52, 1–12 (2013).

    Article  CAS  Google Scholar 

  14. Hemsworth, G. R. et al. J. Am. Chem. Soc. 135, 6069–6077 (2013).

    Article  CAS  Google Scholar 

  15. Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Biotechnol. Biofuels 6, 41 (2013).

    Article  CAS  Google Scholar 

  16. Yin, D. T. et al. Nat. Commun. 6, 10197 (2015).

    Article  CAS  Google Scholar 

  17. Vuong, T. V., Liu, B., Sandgren, M. & Master, E. R. Biomacromolecules 18, 610–616 (2017).

    Article  CAS  Google Scholar 

  18. Mann, A. J. et al. Appl. Environ. Microbiol. 79, 6813–6822 (2013).

    Article  CAS  Google Scholar 

  19. Girhard, M., Tieves, F., Weber, E., Smit, M. S. & Urlacher, V. B. Appl. Microbiol. Biotechnol. 97, 1625–1635 (2013).

    Article  CAS  Google Scholar 

  20. Kim, H. T., Lee, S., Kim, K. H. & Choi, I. G. Bioresour. Technol. 107, 301–306 (2012).

    Article  CAS  Google Scholar 

  21. Girhard, M. et al. Microb. Cell Fact. 8, 36 (2009).

    Article  Google Scholar 

  22. Nickerson, D. P. & Wong, L. L. Protein Eng. 10, 1357–1361 (1997).

    Article  CAS  Google Scholar 

  23. Li, C. et al. BMC Biotechnol. 11, 92 (2011).

    Article  CAS  Google Scholar 

  24. Purdy, M. M., Koo, L. S., Ortiz de Montellano, P. R. & Klinman, J. P. Biochemistry 43, 271–281 (2004).

    Article  CAS  Google Scholar 

  25. Omura, T. & Sato, R. J. Biol. Chem. 239, 2370–2378 (1964).

    CAS  Google Scholar 

  26. Jefcoate, C. R. Methods Enzymol. 52, 258–279 (1978).

    Article  CAS  Google Scholar 

  27. Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L. & Martínez-Castro, I. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 1226–1240 (2011).

    Article  CAS  Google Scholar 

  28. Kumar, S., Stecher, G. & Tamura, K. Mol. Biol. Evol. 33, 1870–1874 (2016).

    Article  CAS  Google Scholar 

  29. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  30. Edgar, R. C. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  31. Hehemann, J. H., Smyth, L., Yadav, A., Vocadlo, D. J. & Boraston, A. B. J. Biol. Chem. 287, 13985–13995 (2012).

    Article  CAS  Google Scholar 

  32. Finn, R. D. et al. Nucleic Acids Res. 44, D279–D285 (2016). D1.

    Article  CAS  Google Scholar 

  33. Yin, Y. et al. Nucleic Acids Res. 40, W445–W451 (2012).

    Article  CAS  Google Scholar 

  34. Krzywinski, M. et al. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  Google Scholar 

  35. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  Google Scholar 

Download references


We thank the German Research Foundation (DFG) for funding through the Research Unit FOR2406. J.-H.H. acknowledges funding by the Emmy Noether Program of the DFG, grant number HE 7217/1-1. We are also grateful to V. Urlacher (Düsseldorf, Germany) for providing the genes encoding P450cam, PdX, PdR and CPR. We thank D. Nelson (Memphis, USA) for assigning the P450s to a subfamily in the P450 database.

Author information

Authors and Affiliations



J.-H.H., T.S. and U.T.B. initiated the study and directed the project. J.E. together with L.R. cloned, expressed and purified the P450 enzymes and performed preliminary studies; H.C.B. and L.R. cloned, expressed and purified all other enzymes and performed all further experiments. S.T. and J.-H.H. performed the computational analysis. L.R., H.C.B., J.-H.H. and U.T.B. prepared the manuscript, which was revised and approved by all authors.

Corresponding authors

Correspondence to Jan-Hendrik Hehemann or Uwe T. Bornscheuer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Figures 1–7

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisky, L., Büchsenschütz, H.C., Engel, J. et al. Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases. Nat Chem Biol 14, 342–344 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing