A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters

A Publisher Correction to this article was published on 08 March 2018

This article has been updated

Abstract

We developed a new way to engineer complex proteins toward multidimensional specifications using a simple, yet scalable, directed evolution strategy. By robotically picking mammalian cells that were identified, under a microscope, as expressing proteins that simultaneously exhibit several specific properties, we can screen hundreds of thousands of proteins in a library in just a few hours, evaluating each along multiple performance axes. To demonstrate the power of this approach, we created a genetically encoded fluorescent voltage indicator, simultaneously optimizing its brightness and membrane localization using our microscopy-guided cell-picking strategy. We produced the high-performance opsin-based fluorescent voltage reporter Archon1 and demonstrated its utility by imaging spiking and millivolt-scale subthreshold and synaptic activity in acute mouse brain slices and in larval zebrafish in vivo. We also measured postsynaptic responses downstream of optogenetically controlled neurons in C. elegans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Multiparameter directed evolution of proteins in mammalian cells via robotic cell picking.
Fig. 2: Characterization of Archons in cultured cells.
Fig. 3: Millivolt-scale imaging of neural voltage in intact brain slices.
Fig. 4: Voltage imaging of Archon1-expressing neurons in larval zebrafish.
Fig. 5: All-optical electrophysiology in C. elegans.

Change history

  • 08 March 2018

    In the version of this article originally published, the bottom of Figure 4f,g was partially truncated in the PDF. The error has been corrected in the PDF version of this article.

References

  1. 1.

    Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Subach, F. V., Piatkevich, K. D. & Verkhusha, V. V. Directed molecular evolution to design advanced red fluorescent proteins. Nat. Methods 8, 1019–1026 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Zhao, Y. et al. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr. Biol. (Camb) 6, 714–725 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Dean, K. M. et al. Microfluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching. Integr. Biol. (Camb) 7, 263–273 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Fiedler, B. L. et al. Droplet microfluidic flow cytometer for sorting on transient cellular responses of genetically-encoded sensors. Anal. Chem. 89, 711–719 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article  Google Scholar 

  9. 9.

    Boyden, E. S. Optogenetics and the future of neuroscience. Nat. Neurosci. 18, 1200–1201 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Ai, H.-W., Baird, M. A., Shen, Y., Davidson, M. W. & Campbell, R. E. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nat. Protoc. 9, 910–928 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Chow, B. Y., Chuong, A. S., Klapoetke, N. C. & Boyden, E. S. Synthetic physiology strategies for adapting tools from nature for genetically targeted control of fast biological processes. Methods. Enzymol. 497, 425–443 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Flytzanis, N. C. et al. Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nat. Commun. 5, 4894 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Gong, Y., Wagner, M. J., Zhong Li, J. & Schnitzer, M. J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat. Commun. 5, 3674 (2014).

    Google Scholar 

  16. 16.

    Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Környei, Z. et al. Cell sorting in a Petri dish controlled by computer vision. Sci. Rep. 3, 1088 (2013).

    Article  Google Scholar 

  18. 18.

    Salánki, R. et al. Automated single cell sorting and deposition in submicroliter drops. Appl. Phys. Lett. 105, 83703 (2014).

    Article  Google Scholar 

  19. 19.

    Giraud, E. et al. Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417, 202–205 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    He, L., Friedman, A. M. & Bailey-Kellogg, C. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments. Proteins 80, 790–806 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Knowles, J. D. & Corne, D. W. Approximating the nondominated front using the Pareto Archived Evolution Strategy. Evol. Comput. 8, 149–172 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    Currin, A., Swainston, N., Day, P. J. & Kell, D. B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 44, 1172–1239 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Grigoryan, G., Reinke, A. W. & Keating, A. E. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859–864 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    McIsaac, R. S. et al. Directed evolution of a far-red fluorescent rhodopsin. Proc. Natl. Acad. Sci. USA 111, 13034–13039 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Kotnik, T., Pucihar, G. & Miklavčič, D. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J. Membr. Biol. 236, 3–13 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Del, Re,A. M. & Woodward, J. J. Inhibition of gap junction currents by the abused solvent toluene. Drug. Alcohol. Depend. 78, 221–224 (2005).

    Article  Google Scholar 

  27. 27.

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Friedrich, R. W., Jacobson, G. A. & Zhu, P. Circuit neuroscience in zebrafish. Curr. Biol. 20, R371–R381 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends. Neurosci. 37, 264–278 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Wyart, C. et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Gordus, A., Pokala, N., Levy, S., Flavell, S. W. & Bargmann, C. I. Feedback from network states generates variability in a probabilistic olfactory circuit. Cell 161, 215–227 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Dobes, N. C. et al. Laser-based directed release of array elements for efficient collection into targeted microwells. Analyst 138, 831–838 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photonics 9, 113–119 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Krzywinski, M. & Altman, N. Visualizing samples with box plots. Nat. Methods 11, 119–120 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Subedi, A. et al. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 66, 433–440 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4, 2153 (2013).

    Article  Google Scholar 

  42. 42.

    Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    Makarov, N. S., Drobizhev, M. & Rebane, A. Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Opt. Express. 16, 4029–4047 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Lebkowski, J. S., DuBridge, R. B., Antell, E. A., Greisen, K. S. & Calos, M. P. Transfected DNA is mutated in monkey, mouse, and human cells. Mol. Cell. Biol. 4, 1951–1960 (1984).

    CAS  Article  Google Scholar 

  46. 46.

    Mahon, M. J. Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity. Biotechniques 51, 119–128 (2011).

    CAS  Google Scholar 

  47. 47.

    Qin, J. Y. et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5, e10611 (2010).

    Article  Google Scholar 

  48. 48.

    Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    CAS  Article  Google Scholar 

  49. 49.

    Okazaki, M., Yoshida, Y., Yamaguchi, S., Kaneno, M. & Elliott, J. C. Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 22, 2459–2464 (2001).

    CAS  Article  Google Scholar 

  50. 50.

    Pucihar, G., Kotnik, T. & Miklavcic, D. Measuring the induced membrane voltage with Di-8-ANEPPS. J. Vis. Exp. 88, 4–6 (2009).

    Google Scholar 

  51. 51.

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    Jiang, M. & Chen, G. High Ca2+ -phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

    CAS  Article  Google Scholar 

  53. 53.

    Kimura, Y., Satou, C. & Higashijima, S. V2a and V2b neurons are generated by the final divisions of pair-producing progenitors in the zebrafish spinal cord. Development 135, 3001–3005 (2008).

    CAS  Article  Google Scholar 

  54. 54.

    Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    Fisher, S. et al. Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat. Protoc. 1, 1297–1305 (2006).

    CAS  Article  Google Scholar 

  56. 56.

    Renaud, O., Herbomel, P. & Kissa, K. Studying cell behavior in whole zebrafish embryos by confocal live imaging: application to hematopoietic stem cells. Nat. Protoc. 6, 1897–1904 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 77, 71–94 (1974).

    CAS  Google Scholar 

  58. 58.

    Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2011).

    Article  Google Scholar 

  59. 59.

    Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).

    CAS  Article  Google Scholar 

  60. 60.

    Dell, R. B., Holleran, S. & Ramakrishnan, R. Sample size determination. ILAR. J. 43, 207–213 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Paradis and M. Saturno-Condon for help with flow cytometry, F. Chen and L. Kang for help with confocal imaging, N. Ji for assistance with C. elegans imaging, and B. Trout and C. Sudrik for help with spectroscopic analysis of iRFPs. We are grateful to X. Han and K. Hansen (Boston University) for the pCAG-WPRE expression vector, and F. Subach (Moscow Institute of Physics and Technology) for the pWA23h plasmid. We are grateful to E. Costa, D. Estandian, A. Wassie and L. Cai for useful discussions. C.S. acknowledges the Lefler Center for the Study of Neurodegenerative Disorders for support. E.S.B. was supported by the HHMI-Simons Faculty Scholars Program, the IET Harvey Prize, the MIT Media Lab, the New York Stem Cell Foundation-Robertson Award, the Open Philanthropy Project, Human Frontier Science Program RGP0015/2016, and NIH grants 1R43MH109332, 1R24MH106075, 2R01DA029639, 1R01EY023173, 1R01NS087950, 1R01MH103910 and 1R01GM104948, and NIH Director’s Pioneer Award 1DP1NS087724. O.S. was supported by a Simons Fellowship. H.-J.S. was supported by a Samsung Fellowship. D.G. was supported by an NSF Fellowship. Y.-G.Y. was supported by a Samsung Fellowship. L.F. was supported by a Simons Fellowship.

Author information

Affiliations

Authors

Contributions

K.D.P., E.E.J. and E.S.B. initiated the project, made high-level designs and plans, and interpreted the data. K.D.P., E.E.J., B.S. and O.S. developed the hierarchical multiparameter screening approach. K.D.P. and E.E.J. developed miRFP and together with C.L., M.D., T.H., H.J.S. and S.A. performed its characterization. K.D.P. and E.E.J. developed Archons and, together with D.P., characterized them in cultured cells. C.S., D.R.H., J.L.S. and B.L.S. performed electrophysiology experiments in acute brain slices. K.D.P, E.E.J., D.G., E.P. and C.L. analyzed neuronal culture data. N.P. and Y.G.Y. assisted on imaging setups. E.E.J. and K.D.P. with help from L.F. performed experiments on zebrafish injected by C.T.Y., T.K. and M.B.A. K.D.P., S.W.F. and J.L.R. performed experiments on C. elegans. C.R. and F.E. designed vectors for zebrafish expression. C.L. and E.E.J. performed statistical analysis. K.D.P., E.E.J., C.S., C.L. and E.S.B. wrote the paper with contributions from all of the authors. E.S.B. oversaw all aspects of the project.

Corresponding author

Correspondence to Edward S. Boyden.

Ethics declarations

Competing interests

B.S. is a founder of the CellSorter startup company. K.D.P., E.E.J. and E.S.B. are inventors on patent applications regarding the molecules described here. B.S., K.D.P., E.E.J. and E.S.B. are inventors on a patent application regarding the screening method developed here.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41589-018-0023-6.

Electronic supplementary material

Supplementary Tables and Figures

Supplementary Tables 1–6, Supplementary Figures 1–29

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piatkevich, K.D., Jung, E.E., Straub, C. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat Chem Biol 14, 352–360 (2018). https://doi.org/10.1038/s41589-018-0004-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing