Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic therapy potentiates transposable element transcription to create tumor-enriched antigens in glioblastoma cells

Abstract

Inhibiting epigenetic modulators can transcriptionally reactivate transposable elements (TEs). These TE transcripts often generate unique peptides that can serve as immunogenic antigens for immunotherapy. Here, we ask whether TEs activated by epigenetic therapy could appreciably increase the antigen repertoire in glioblastoma, an aggressive brain cancer with low mutation and neoantigen burden. We treated patient-derived primary glioblastoma stem cell lines, an astrocyte cell line and primary fibroblast cell lines with epigenetic drugs, and identified treatment-induced, TE-derived transcripts that are preferentially expressed in cancer cells. We verified that these transcripts could produce human leukocyte antigen class I-presented antigens using liquid chromatography with tandem mass spectrometry pulldown experiments. Importantly, many TEs were also transcribed, even in proliferating nontumor cell lines, after epigenetic therapy, which suggests that targeted strategies like CRISPR-mediated activation could minimize potential side effects of activating unwanted genomic regions. The results highlight both the need for caution and the promise of future translational efforts in harnessing treatment-induced TE-derived antigens for targeted immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic therapy reshapes the epigenetic landscape in proliferating GSCs to activate antiviral response pathways.
Fig. 2: Epigenetic therapy generates antigenic chimeric transcripts from TE cryptic promoters.
Fig. 3: Treatment-induced TE-chimeric antigens are presented on HLA-I molecules on GSCs.
Fig. 4: Long-read technology detects TE-chimeric transcripts that generate TI-TEAs in B49 GSCs.
Fig. 5: Targeted epigenetic reactivation of TE-chimeric transcripts with CRISPRa technology.

Similar content being viewed by others

Data availability

All omics data generated during this study are available through the Gene Expression Omnibus (GSE227059) and Proteomics Identification Database (PXD039893). Genotype-Tissue Expression transcriptomic data were obtained with database of Genotypes and Phenotypes approval through the accession number phs000424.v9.p2. Source data are provided with this paper.

Code availability

All custom scripts are available on GitHub (https://github.com/twlab/epitherapy_induced_antigen_GBM) and Zenodo (https://zenodo.org/records/11869293)93.

References

  1. Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20, 1–8 (2016).

    Article  Google Scholar 

  2. Tivnan, A., Heilinger, T., Lavelle, E. C. & Prehn, J. H. M. Advances in immunotherapy for the treatment of glioblastoma. J. Neurooncol. 131, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arrieta, V. A. et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat. Cancer 2, 1372–1386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahin, U. & Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science 359, 1355–1360 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Finn, O. J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18, 183–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Lim, M., Xia, Y., Bettegowda, C. & Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Johanns, T. M. et al. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology 8, 1–10 (2019).

    Article  Google Scholar 

  13. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Dutoit, V. et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135, 1042–1054 (2012).

    Article  PubMed  Google Scholar 

  17. Winograd, E. K., Ciesielski, M. J. & Fenstermaker, R. A. Novel vaccines for glioblastoma: clinical update and perspective. Immunotherapy 8, 1293–1308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, N. F., Carter, T. J., Ottaviani, D. & Mulholland, P. Harnessing the immune system in glioblastoma. Br. J. Cancer 119, 1171–1181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lybaert, L. et al. Challenges in neoantigen-directed therapeutics. Cancer Cell 41, 15–40 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Valdespino, V. & Valdespino, P. M. Potential of epigenetic therapies in the management of solid tumors. Cancer Manag. Res. 7, 241–251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 27–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Jang, H. S. et al. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611–617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang, Y., Qu, X., Shah, N. M. & Wang, T. Towards targeting transposable elements for cancer therapy. Nat. Rev. Cancer 24, 123–140 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Goyal, A. et al. DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts. Nat. Commun. 14, 6731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shah, N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Pollard, S. M. et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Aum, D. J. et al. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg. Focus 37, 1–11 (2014).

    Article  Google Scholar 

  36. Liu, M. et al. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. Proc. Natl Acad. Sci. USA 113, 10238–10244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salimullah, M., Mizuho, S., Plessy, C. & Carninci, P. NanoCAGE: A high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb. Protoc. pdb.prot5559 (2011).

  38. Cumbie, J. S., Ivanchenko, M. G. & Megraw, M. NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics 16, 597 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kong, Y. et al. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bonté, P. E. et al. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 39, 110916 (2022).

    Article  PubMed  Google Scholar 

  41. Bonaventura, P. et al. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8, eabj3671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saini, S. K. et al. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang, W. R., Ardeljan, D., Pacyna, C. N., Payer, L. M. & Burns, K. H. SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res. 47, e27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bassani-Sternberg, M. Mass spectrometry based immunopeptidomics for the discovery of cancer neoantigens. Methods Mol. Biol. 1719, 209–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Chi, H. et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. 36, 1059–1061 (2018).

    Article  CAS  Google Scholar 

  49. Miyaguchi, K. et al. Activated T cell therapy targeting glioblastoma cancer stem cells. Sci. Rep. 13, 196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang, Y. J. et al. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45, W12–W16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 13–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Jurtz, V. et al. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berrens, R. V. et al. Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat. Biotechnol. 40, 546–554 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Maeng, J. H., Jang, H. J., Du, A. Y., Tzeng, S.-C. & Wang, T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res. 33, 2143–2155 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Huang, Y. H. et al. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 18, 1–11 (2017).

    Article  CAS  Google Scholar 

  57. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pflueger, C. et al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 28, 1193–1206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morita, S. et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Sahebjam, S., Sharabi, A., Lim, M., Kesarwani, P. & Chinnaiyan, P. Immunotherapy and radiation in glioblastoma. J Neurooncol. 134, 531–539 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Krishnamurthy, J. et al. Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma. Clin. Cancer Res. 21, 3241–3251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang-Johanning, F. et al. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 68, 5869–5877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mullins, C. S. & Linnebacher, M. Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol. Immunother. 61, 1093–1100 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Cherkasova, E. et al. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res. 76, 2177–2185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ohtani, H. et al. Activation of a subset of evolutionarily young transposable elements and innate immunity are linked to clinical responses to 5-azacytidine. Cancer Res. 80, 2441–2450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohtani, H., Liu, M., Zhou, W., Liang, G. & Jones, P. A. Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Res. 28, 1147–1157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singleton, W. G. et al. Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int. J. Nanomed. 12, 1385–1399 (2017).

    Article  CAS  Google Scholar 

  69. Yang, J., Li, Y., Zhang, T. & Zhang, X. Development of bioactive materials for glioblastoma therapy. Bioact. Mater. 1, 29–38 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, W., Li, L., Jiang, J., Wu, M. & Lin, P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis. Clin. Med. 4, 179–191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ledford, H. CRISPR treatment inserted directly into the body for first time. Nature 579, 185 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, G. et al. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat. Immunol. 20, 1494–1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ohtani, H., Liu, M., Liang, G., Jang, H. J. & Jones, P. A. Efficient activation of hundreds of LTR12C elements reveals cis-regulatory function determined by distinct epigenetic mechanisms. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae498 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guo, Y. et al. CRISPR-TE: a web-based tool to generate single guide RNAs targeting transposable elements. Mob. DNA 15, 3 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gujar, A. D. et al. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma. Proc. Natl Acad. Sci. USA 113, E8247–E8256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mao, D. D. et al. A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep. 11, 1809–1821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Richner, M., Victor, M. B., Liu, Y., Abernathy, D. & Yoo, A. S. MicroRNA-based conversion of human fibroblasts into striatal medium spiny neurons. Nat. Protoc. 10, 1543–1555 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Xiao, Y. et al. A novel significance score for gene selection and ranking. Bioinformatics 30, 801–807 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, B. et al. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat. Commun. 7, 11708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wyman, D. & Mortazavi, A. TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in long-read transcripts. Bioinformatics 35, 340–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. Preprint at bioRxiv https://doi.org/10.1101/672931 (2020).

  87. Xie, M. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat. Genet. 45, 836–841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310–3316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schmidt, T. et al. Universal spectrum explorer: a standalone (web-)application for cross-resource spectrum comparison. J. Proteome Res. 20, 3388–3394 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Shah, N. M. & Maeng, J. H. twlab/epitherapy_induced_antigen_GBM: epitherapy induced TE antigens in GBM v1.0.0. Zenodo zenodo.org/records/11869293 (2024).

Download references

Acknowledgements

We would like to thank J. Hoisington-López and M. L. Jaeger from The Edison Family Center for Genome Sciences & Systems Biology (CGSSB) for assistance with sequencing; B. Koebbe and E. Martin from CGSSB for assistance with data processing; M. Savio, M. Patana and D. Schweppe from the Siteman Flow Cytometry Core for FACS-related expertise; D. Mao from A. Kim’s laboratory for expertise pertaining to GSCs; D. Chandler from Van Andel Institute for valuable editorial help with the manuscript. T.W. was funded by National Institutes of Health (NIH) grants (5R01HG007175, U24ES026699 and U01HG009391) and an American Cancer Society Research Scholar Grant (RSG-14-049-01-DMC). N.M.S. was a Howard Hughes Medical Institute Medical Research Fellow. H.J.J. was supported by a grant from the National Institute of General Medical Sciences (T32GM007067). The LC–MS/MS synthetic peptide analysis was performed by the Proteomics & Mass Spectrometry Facility at the Donald Danforth Plant Science Center and the acquisition of the Orbitrap Fusion Lumos LC–MS/MS was supported by a National Science Foundation grant (DBI-1827534). Mass spectrometry analyses for LTR12C_TP63 were performed by the Mass Spectrometry Technology Access Center at the McDonnell Genome Institute at Washington University School of Medicine, which was supported by a grant from the Diabetes Research Center and the NIH (P30DK020579), a Clinical and Translational Science Award from the Institute of Clinical and Translational Sciences and the National Center for Advancing Translational Sciences (UL1TR002345), and a Cancer Center Support Grant from the Siteman Cancer Center and the National Cancer Institute (P30CA091842).

Author information

Authors and Affiliations

Authors

Contributions

H.J.J., N.M.S. and T.W. conceived and implemented the study; H.J.J., N.M.S., J.H.M., Y.L., J.Y.C., D.L. and H.J.L. contributed to the computational analysis; H.J.J., J.H.M. and X.X. generated the epigenetic and transcriptomic profiles of the cell lines; H.J.J., X.Q., T.M., D.A., P.A.D. and A.H.K. cultured the GSCs and contributed reagents; H.J.J., Y.L., N.L.B. and J.G. designed and implemented the CRISPRa experiments; H.J.J. performed the HLA pulldown for LC–MS/MS; Y.L. performed the TP63 immunoprecipitation for LC–MS/MS; N.M.S., J.H.M., Y.L., S.-C.T., R.B.W. and M.J.M. performed the proteomics analysis; and H.J.J., N.M.S., J.H.M., Y.L. and T.W. prepared and revised the manuscript with input from all authors.

Corresponding authors

Correspondence to Albert H. Kim or Ting Wang.

Ethics declarations

Competing interests

A.H.K. is a consultant for Monteris Medical. The other authors have no competing interests.

Peer review

Peer review information

Nature Genetics thanks Artem Babaian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 GSCs are treated with non-cytotoxic doses of Decitabine and Panobinostat.

a, Schematic of the different treatment conditions used to quantify GSC proliferation and cell death rates after epigenetic drug treatment. b, Control and treated GSCs at end of treatment (Day 6) show minimal differences in cell confluency; bright-field microscope images obtained at 10x magnification. c, Cell viability after epigenetic drug treatment. Live cells were identified by flow cytometry after propidium iodide (PI) and annexin staining. d, Example gating strategy for detection of live cells (that is B36 GSCs) after treatment. Population of PI-negative and annexin-negative were identified as live cells. The experiment was repeated twice with similar results.

Source data

Extended Data Fig. 2 LTR family of transposable elements are enriched to be activated by epigenetic therapy treatment.

a, Number of treatment-induced TSSs annotated with TE class. b, Number of treatment-induced TSSs annotated with LTR subfamilies. Nine LTR subfamilies that have at least 15 treatment-induced TSSs in at least one cell line are shown. Treatment-induced TSSs are defined as CAGE peaks with the minimum expression level of 0.3 TPM. Others = peaks not in TEs.

Extended Data Fig. 3 SQuIRE rescues transcriptional activation of young endogenous transposable elements.

Heatmap showing enrichment score of TE subfamilies that were activated by epigenetic therapy, after rescuing multi-mapped reads in CAGE-seq (left) and RNA-seq (right) with SQuIRE.

Extended Data Fig. 4 Expression of the unique genomic loci of endogenous TE antigens detected by HLA-pulldown mass spectrometry.

a, Number of HLA-I antigens detected across TE classes for the Decitabine+Panobinostat (DP) and DMSO treated B49 cell line (left), and Venn diagram comparing the antigens found between the two treatments (right). b, Same as (a) but for B66 cells. c, Number of endogenous TE antigens detected across replicate experiments in DP-treated B49 cells (top) and B66 cells (bottom). d, Venn diagram of the endogenous TE antigens found in DP-treated B49 and B66 cell lines. e, Stacked bar plot with the x-axis being the number of genomic loci found for a particular antigen using BLAT, and the y-axis is the number of HLA-I antigens detected after epigenetic therapy in B49 (left) and B66 (right) cell lines. The fill color is the class of transposable elements that the peptides originate from. f, Heatmap of the endogenous TE antigens with genomic support that are derived from unique loci. The highlighted boxes are the samples in which they are detected as being expressed.

Extended Data Fig. 5 Synthetic peptide validation of TI-TEAs.

Mass spectra for antigen candidates discovered in the HLA-pulldown mass spectrometry experiments (top), and the mass spectra of a corresponding synthetic peptide with same sequence (bottom). The TI-TEA candidate and synthetic peptide mass spectra for LISNSWGQAI did not match, so the LISNSWGQAI peptide was excluded from the TI-TEA candidate list. GLFCGDVHTV synthetic peptide was generated with a carbamidomethyl cysteine after consideration of cysteine alkylation caused by iodoacetamide in lysis buffer.

Extended Data Fig. 6 Long-read technology detects additional TE-derived antigens presented on HLA molecules in GSCs.

a, RNA-seq expression levels of TI-TEA encoding transcripts detected by long-read sequencing in GTEx samples. Peptide sequences for TI-TEAs are on the left of the heatmap. Transcript IDs are on the right of the heatmap. * denotes immune-privileged tissue. b, Detection of TE-derived antigens from HLA-pulldown experiments from B49 GSCs. Purple circles signify TE-derived antigens that were specifically induced by epigenetic therapy with genomic support. c, The number of genomic loci that encode each of the TI-TEAs, as estimated by BLAT. The value of 0 genomic loci represents antigens derived from TE-exon junctions of TE-derived transcripts. d, The number of coding transcripts that encode each of the TI-TEAs based on long-read data. For each TI-TEA, there is a primary transcript that originates from a treatment-induced TE. The coding transcripts are categorized into four groups based on their 5′ overlap with TE and their exon overlap with annotated genes; Same TE - transcripts derived from the same TE as the primary transcript; Alternative TE - transcripts that originate from a different TE compared to the primary transcript; Canonical Gene Isoform - transcripts that overlap with exons of annotated genes; Alternative Non-TE - transcripts that do not derive from a TE and do not overlap with exons of annotated genes. e, Transcript expression levels for TE-derived or other types of transcripts that are predicted to create 18 TI-TEAs in B49 GSCs.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Table titles and Supplementary Figs. 1–17.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–9.

Source data

Source Data Fig. 5

Unprocessed Western blot for Fig. 5i.

Source Data Extended Data Fig. 1

Unprocessed bright-field microscopy image from Extended Data Fig. 1b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H.J., Shah, N.M., Maeng, J.H. et al. Epigenetic therapy potentiates transposable element transcription to create tumor-enriched antigens in glioblastoma cells. Nat Genet 56, 1903–1913 (2024). https://doi.org/10.1038/s41588-024-01880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01880-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing