Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development

Abstract

Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947–MuTC01–LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly, comparative analysis of centromeric structures and epigenetic landscapes of the G. raimondii T2T genome.
Fig. 2: Identification of an ovule-specific, trans-acting, siRNA-generating DNA transposon MuTC01 in the G. raimondii genome.
Fig. 3: miR2947 is crucial for initiating siRNA production from MuTC01 during the formation of complex folded cotyledons.
Fig. 4: A tripartite regulatory pathway involving miR2947, MuTC01 and the LEC2b gene regulates cotton cotyledon folding.
Fig. 5: An evolutionary model for the formation of complex folded cotyledons in cotton seeds.

Similar content being viewed by others

Data availability

All raw sequencing data (ONT sequencing, PacBio HiFi and MGI reads) are available from the National Center for Biotechnology Information (NCBI) BioProject database (accession no. PRJNA812351) and the China National Center for Bioinformation (CNCB) (accession no. PRJCA008338). The genome sequence and gene annotation files for G. raimondii are available at the CNCB genome warehouse (https://ngdc.cncb.ac.cn/gwh) under accession no. GWHBISS00000000 or NCBI under accession nos. CP156731CP156743 (BioProject PRJNA812351). The genome sequence, gene and transposable element annotation files for G. raimondii are also available at GitHub (https://github.com/huanggai/T2T-Cotton-DD5.git) and figshare (https://doi.org/10.6084/m9.figshare.25771302.v1)80. The RNA-seq, full-length NanoPore cDNA-seq, small RNA-seq and bisulfite sequencing for G. raimondii were deposited under NCBI project nos. PRJNA1128012, PRJNA1127988, PRJNA1127990, PRJNA1128006 or CNCB project nos. PRJCA016685, PRJCA016686, PRJCA016683 and PRJCA016687. The small RNA-seq data and degradome sequencing for G. hirsutum are available under the NCBI PRJNA1128045 or CNCB PRJCA016684 and PRJCA016814, respectively. The following databases were used: the Seed Information Database (https://ser-sid.org); the Seed Biology Place (http://seedbiology.eu/); and the Plant Genomes Database (https://www.plabipd.de). Source data are provided with this paper.

Code availability

All software used in the study is publicly available as described in the Methods and Reporting Summary. The custom code for the centromere analysis is available at Zenodo (https://zenodo.org/records/11115400)81 and GitHub (https://github.com/huanggai/T2T-Cotton-DD5.git).

References

  1. Linkies, A., Graeber, K., Knight, C. & Leubner-Metzger, G. The evolution of seeds. New Phytol. 186, 817–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, A. C. The comparative internal morphology of seeds. Am. Midl. Nat. 36, 513–660 (1946).

    Article  Google Scholar 

  3. Seelanan, T., Schnabel, A. & Wendel, J. F. Congruence and consensus in the cotton tribe (Malvaceae). Syst. Bot. 22, 259–290 (1997).

    Article  Google Scholar 

  4. Fryxell, P. A. A redefinition of the tribe Gossypieae. Bot. Gaz. 129, 296–308 (1968).

    Article  Google Scholar 

  5. Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Fryxell, P. A. The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae) (Texas A & M Univ. Press, 1978).

  7. Wendel, J. F. & Grover, C. E. in Cotton Vol. 57 (eds Fang, D. D. & Percy, R. G.) 25–44 (ASA-CSSA-SSSA, 2015).

  8. Huang, G., Huang, J.-Q., Chen, X.-Y. & Zhu, Y.-X. Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 72, 437–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, G. et al. Genome sequence of Gossypium herbaceum, and genome update of G. arboreum and G. hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 52, 516–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Viot, C. R. & Wendel, J. F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit. Rev. Plant Sci. 42, 1–33 (2023).

    Article  Google Scholar 

  11. Wendel, J. F., Brubaker, C., Alvarez, I., Cronn, R. & Stewart, J. M. in Genetics and Genomics of Cotton (ed. Paterson, A. H.) 3–22 (Springer-Verlag, 2009).

  12. Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44, 1098–1103 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, M. et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol. Biol. Evol. 38, 3621–3636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Udall, J. A. et al. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri. G3 9, 3079–3085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wen, X. et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci. China Life Sci. 66, 2214–2256 (2023).

    Article  PubMed  Google Scholar 

  17. Song, J. M. et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Naish, M. et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 618, 557–565 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, E., Xie, Z. X., Gustafson, A. M. & Carrington, J. C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y. L., Teng, C., Xia, R. & Meyers, B. C. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32, 3059–3080 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhan, J. P. & Meyers, B. C. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annu. Rev. Plant Biol. 74, 21–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65, 102140 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A. & Wendel, J. F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16, 1252–1261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang, X. et al. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the centromeric landscape and evolution. Plant Commun. 5, 100722 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, M. et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4, 90–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. McCartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Nat. Methods 19, 687–695 (2022).

    Article  CAS  Google Scholar 

  31. Gan, Y. et al. Chromosomal locations of 5S and 45S rDNA in Gossypium genus and its phylogenetic implications revealed by FISH. PLoS ONE 8, e68207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bzikadze, A. V., Mikheenko, A. & Pevzner, P. A. Fast and accurate mapping of long reads to complete genome assemblies with VerityMap. Genome Res. 32, 2107–2118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Wen, X., Wu, Z., Wang, K. & Zhu, Y. Large-scale long terminal repeat insertions produced a significant set of novel transcripts in cotton. Sci. China Life Sci. 66, 1711–1724 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Han, J. et al. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant J. 88, 992–1005 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Dai, X. B., Zhuang, Z. H. & Zhao, P. X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, Z., Qanmber, G., Wang, Z., Yang, Z. & Li, F. Gossypium Genomics: trends, scope, and utilization for cotton improvement. Trends Plant Sci. 25, 488–500 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Su, H. D. et al. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035–2051 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wolfgruber, T. K. et al. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet. 5, e1000743 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gong, Z. et al. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24, 3559–3574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perumal, S. et al. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat. Plants 6, 929–941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmed, H. I. et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 620, 830–838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dawe, R. K. Centromere renewal and replacement in the plant kingdom. Proc. Natl. Acad. Sci. USA 102, 11573–11574 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Talbert, P. B. & Henikoff, S. What makes a centromere? Exp. Cell Res. 389, 111895 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, P., Cuerda-Gil, D., Shahid, S. & Slotkin, R. K. The epigenetic control of the transposable element life cycle in plant genomes and beyond. Annu. Rev. Genet. 56, 63–87 (2022).

    Article  PubMed  Google Scholar 

  48. Cvetkovic, T. et al. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. G3 11, jkab136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Areces-Berazain, F. & Ackerman, J. D. Phylogenetics, delimitation and historical biogeography of the pantropical tree genus Thespesia (Malvaceae, Gossypieae). Bot. J. Linn. Soc. 181, 171–198 (2016).

    Article  Google Scholar 

  50. Lunardon, A. et al. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res. 30, 497–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang, M. et al. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. Science 379, 576–582 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheng, H. Y., Concepcion, G. T., Feng, X. W., Zhang, H. W. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).

    Article  PubMed  Google Scholar 

  57. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Nussbaumer, T. et al. MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 41, D1144–D1151 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Ou, S. J. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shumate, A., Wong, B., Pertea, G. & Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput. Biol. 18, e1009730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, H. et al. Gene expression and chromatin modifications associated with maize centromeres. G3 6, 183–192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vainshtein, Y., Rippe, K. & Teif, V. B. NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data. BMC Genomics 18, 158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sun, L. et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11, 1886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, C. J. et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wen, X. et al. Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. Sci. China Life Sci. 65, 1776–1793 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Shi, Y.-H. et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651–664 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, G. Telomere-to-telomere Gossypium raimondii genome (final version). figshare https://doi.org/10.6084/m9.figshare.25771302.v1 (2024).

  81. Huang, G. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Zenodo https://doi.org/10.5281/zenodo.11115400 (2024).

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant nos. 32388101 to Y.Z. and 32201747 to G.H.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and G.H. conceived and designed the project. G.H. and Z.B. conducted the T2T genome assembly. G.H. analyzed the data and performed the experiments. L.F. and J.Z. assisted in the small RNA analysis. X.C. and J.F.W. provided input for the discussions. Y.Z. and G.H. wrote and revised the paper, with assistance from J.F.W.

Corresponding authors

Correspondence to Gai Huang or Yuxian Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Daniel Peterson, Qian-Hao Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Tables 1–13, excluding Tables 8 and 10.

Reporting Summary

Peer Review File

Supplementary Table

Supplementary Tables 8 and 10 in Excel format.

Source Data Fig. 1

Values plotted in Fig. 1b.

Source Data Fig. 4

Values plotted in Fig. 4c,j.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Bao, Z., Feng, L. et al. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet 56, 1953–1963 (2024). https://doi.org/10.1038/s41588-024-01877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01877-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research