Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits

Abstract

Peas are essential for human nutrition and played a crucial role in the discovery of Mendelian laws of inheritance. In this study, we assembled the genome of the elite vegetable pea cultivar ‘Zhewan No. 1’ at the chromosome level and analyzed resequencing data from 314 accessions, creating a comprehensive map of genetic variation in peas. We identified 235 candidate loci associated with 57 important agronomic traits through genome-wide association studies. Notably, we pinpointed the causal gene haplotypes responsible for four Mendelian traits: stem length (Le/le), flower color (A/a), cotyledon color (I/i) and seed shape (R/r). Additionally, we discovered the genes controlling pod form (Mendelian P/p) and hilum color. Our study also involved constructing a gene expression atlas across 22 tissues, highlighting key gene modules related to pod and seed development. These findings provide valuable pea genomic information and will facilitate the future genome-informed improvement of pea crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromosomal features of the P.sativum var. ZW1 genome.
Fig. 2: Phylogenomic relationships, population structure and genomic diversity of Pisum accessions.
Fig. 3: GWAS analysis of Mendelian traits.
Fig. 4: GWAS- and BSA-based identification of candidate genes responsible for pod form.
Fig. 5: Integration of GWAS and BSA to identify candidate genes responsible for seed hilum color.
Fig. 6: Identification of genes related to seed, pod and root nodule development.

Similar content being viewed by others

Data availability

The genome sequencing and assembly data of Pisum sativum cultivar Zhewan1 (PeaZW1) have been deposited at National Center for Biotechnology Information under the BioProject PRJNA1042956. The whole-genome sequencing of 237 accessions has also been deposited at NCBI under the BioProject PRJNA1035516. Transcriptome data from different tissues can be found under the BioProject PRJNA1108961. Source data are provided with this paper.

Code availability

All codes and tools used in this study are described in Methods and the Reporting Summary.

References

  1. McCrory, M. A., Hamaker, B. R., Lovejoy, J. C. & Eichelsdoerfer, P. E. Pulse consumption, satiety, and weight management. Adv. Nutr. 1, 17–30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pandey, A. K. et al. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theor. Appl Genet 134, 755–776 (2021).

    Article  PubMed  Google Scholar 

  3. Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat. Genet. 54, 1553–1563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tayeh, N. et al. Genomic tools in pea breeding programs: status and perspectives. Front. Plant Sci. 6, 1037 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu, N. et al. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front. Plant Sci. 6, 1039 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smykal, P. et al. From Mendel’s discovery on pea to today’s plant genetics and breeding: commemorating the 150th anniversary of the reading of Mendel’s discovery. Theor. Appl. Genet. 129, 2267–2280 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Zohary, D. & Hopf, M. Domestication of pulses in the old world: legumes were companions of wheat and barley when agriculture began in the Near East. Science 182, 887–894 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Smykal, P. et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 34, 43–104 (2015).

    Article  Google Scholar 

  9. Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51, 1411–1422 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Makani, J., Nkya, S., Collins, F. & Luzzatto, L. From Mendel to a Mendelian disorder: towards a cure for sickle cell disease. Nat. Rev. Genet. 23, 389–390 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Charlesworth, B. et al. From Mendel to quantitative genetics in the genome era: the scientific legacy of W. G. Hill. Nat. Genet. 54, 934–939 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Mendel, G. Versuche über Pflanzen-Hybriden. Brünn, Im Verlage des Vereines, 1822–1884. Biodiversity Heritage Library https://doi.org/10.5962/bhl.title.61004 (1866).

  13. Van Dijk, P. J. & Ellis, T. H. The full breadth of Mendel’s genetics. Genetics 204, 1327–1336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C. & Martin, C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60, 115–122 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Ingram, T. J. et al. Internode length in Pisum: the Le gene controls the 3beta-hydroxylation of gibberellin A20 to gibberellin A 1. Planta 160, 455–463 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Lester, D. R., Ross, J. J., Davies, P. J. & Reid, J. B. Mendel’s stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase. Plant Cell 9, 1435–1443 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weston, D. E. et al. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol. 147, 199–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lester, D. R., MacKenzie-Hose, A. K., Davies, P. J., Ross, J. J. & Reid, J. B. The influence of the null le-2 mutation on gibberellin levels in developing pea seeds. Plant Growth Regul. 27, 83–89 (1999).

    Article  CAS  Google Scholar 

  19. Armstead, I. et al. Cross-species identification of Mendel’s I locus. Science 315, 73 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H. & Kusaba, M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl Acad. Sci. USA 104, 14169–14174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hellens, R. P. et al. Identification of Mendel’s white flower character. PLoS ONE 5, e13230 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sussmilch, F. C., Ross, J. J. & Reid, J. B. Mendel: from genes to genome. Plant Physiol. 190, 2103–2114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tayeh, N. et al. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 84, 1257–1273 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martin, D. N., Proebsting, W. M. & Hedden, P. Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc. Natl Acad. Sci. USA 94, 8907–8911 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellis, T. H. N. & Poyser, S. J. An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol. 153, 17–25 (2002).

    Article  CAS  Google Scholar 

  28. Lamprecht, H. The variation of linkage and the course of crossing over. Agri Hortic. Genet. 6, 10–48 (1948).

    Google Scholar 

  29. Shirasawa, K., Sasaki, K., Hirakawa, H. & Isobe, S. Genomic region associated with pod color variation in pea (Pisum sativum). G3 (Bethesda) 11, jkab081 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Li, J. A. et al. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23, 628–640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, J. et al. HEAT SHOCK PROTEIN 90.6 interacts with carbon and nitrogen metabolism components during seed development. Plant Physiol. 191, 2316–2333 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan, Y. et al. HSP90.2 promotes CO2 assimilation rate, grain weight and yield in wheat. Plant Biotechnol. J. 21, 1229–1239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinez, C., Pons, E., Prats, G. & Leon, J. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 37, 209–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, W., Wang, Y., Li, X. & Zhang, Y. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Mol. Plant 13, 31–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Tayeh, N. et al. afila, the origin and nature of a major innovation in the history of pea breeding. New Phytol. 243, 1247–1261 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Bordat, A. et al. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1, 93–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Weeden, N. F. et al. A consensus linkage map for Pisum sativum. Pisum Genet. 30, 1–3 (1998).

    Google Scholar 

  38. Willoughby, A. C. & Nimchuk, Z. L. WOX going on: CLE peptides in plant development. Curr. Opin. Plant Biol. 63, 102056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balarynova, J. et al. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. N. Phytol. 235, 1807–1821 (2022).

    Article  CAS  Google Scholar 

  40. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Nasmyth, K. The magic and meaning of Mendel’s miracle. Nat. Rev. Genet. 23, 447–452 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. White, O. E. The present state of knowledge of heredity and variation in peas. Proc. Am. Phil. Soc. 56, 487–588 (1917).

    Google Scholar 

  43. Ahmad, I. S., Reid, J. F., Paulsen, M. R. & Sinclair, J. B. Color classifier for symptomatic soybean seeds using image processing. Plant Dis. 83, 320–327 (1999).

    Article  PubMed  Google Scholar 

  44. Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19, 11–15 (1987).

    Google Scholar 

  45. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).

    Article  Google Scholar 

  54. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).

    Article  PubMed  Google Scholar 

  58. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinf. 19, 189 (2018).

    Article  Google Scholar 

  60. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32, W309–W312 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O. & Borodovsky, M. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18, 1979–1990 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  66. Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Zheng, Y. et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9, 1667–1670 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 4, 4.10.1–4.10.14 (2009).

    Google Scholar 

  77. Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Marcais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cingolani, P. Variant annotation and functional prediction: SnpEff. Methods Mol. Biol. 2493, 289–314 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Retief, J. D. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243–258 (2000).

    CAS  PubMed  Google Scholar 

  85. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. He, Z. et al. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 44, W236–W241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, M. X., Yeung, J. M., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Lyu, X. L. et al. A natural mutation of the NST1 gene arrests secondary cell wall biosynthesis in the seed coat of a hull-less pumpkin accession. Hortic. Res. 9, uhac136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008).

    Article  Google Scholar 

  94. Kumar, L. & M, E. F. Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2, 5–7 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Die, J. V., Roman, B., Nadal, S. & Gonzalez-Verdejo, C. I. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145–153 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Biomarker Technologies Corporation, Beijing and China National Gene Bank (CNGB), Beijing Novogene Co. Ltd for technical support with PacBio HiFi sequencing, Hi-C sequencing, Iso-seq, RNA-seq and whole genomics sequencing. This work was supported by the Zhejiang Provincial Important Science and Technology Specific Projects (grant no. 2021C02065 to N.L., grant no. 2022C02016 to Y.G.), State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products (grant no. 2021DG700024-ZZ202206 to N.L.), National Natural Science Foundation of China (grant no. 31872114 to N.L.) and Zhejiang Basic Public Welfare Research Project (grant no. LGN20C150006 to N.L., grant no. LGN21C150007 to Z.F.).

Author information

Authors and Affiliations

Authors

Contributions

Y.G., N.L., L.Z., T.Z., X.L. and M.Z. conceived the project and designed the study. N.L., T.Z., L.Z., X.L., Z.Z., Y.Z., Z.F., Q.G., K.S., W.S. and Y.D. performed data analyses. N.L. and T.Z. drafted the manuscript. G.Z., X.Z., X.L., X.C., X.Y., Z.F., J.O., B.W. and Y.B. collected samples and performed experiments. N.L. and X.L. wrote the manuscript, and X.G., M.Z., L.Z. and T.Z. revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Mingfang Zhang, Liangsheng Zhang, Ting Zhao or Yaming Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Aureliano Bombarely, Fanjiang Kong, Petr Smýkal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–21.

Source data

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Lyu, X., Zhang, X. et al. Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01867-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research