Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Promoting equity in polygenic risk assessment through global collaboration

Abstract

The long delay before genomic technologies become available in low- and middle-income countries is a concern from both scientific and ethical standpoints. Polygenic risk scores (PRSs), a relatively recent advance in genomics, could have a substantial impact on promoting health by improving disease risk prediction and guiding preventive strategies. However, clinical use of PRSs in their current forms might widen global health disparities, as their portability to diverse groups is limited. This Perspective highlights the need for global collaboration to develop and implement PRSs that perform equitably across the world. Such collaboration requires capacity building and the generation of new data in low-resource settings, the sharing of harmonized genotype and phenotype data securely across borders, novel population genetics and statistical methods to improve PRS performance, and thoughtful clinical implementation in diverse settings. All this needs to occur while considering the ethical, legal and social implications, with support from regulatory and funding agencies and policymakers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A framework for global collaboration for polygenic risk assessment.

Similar content being viewed by others

References

  1. Vollset, S. E. et al. Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet 403, 2204–2256 (2024).

    Article  Google Scholar 

  2. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y. et al. Challenges and opportunities for developing more generalizable polygenic risk scores. Annu. Rev. Biomed. Data Sci. 5, 293–320 (2022).

    Google Scholar 

  4. Baynam, G. et al. Advancing diagnosis and research for rare genetic diseases in Indigenous peoples. Nat. Genet. 56, 189–193 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Philippakis, A. A. et al. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum. Mutat. 36, 915–921 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rehm, H. L. et al. GA4GH: international policies and standards for data sharing across genomic research and healthcare. Cell Genom. 1, 100029 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    CAS  Google Scholar 

  8. Skantharajah, N. et al. Equity, diversity, and inclusion at the Global Alliance for Genomics and Health. Cell Genom. 3, 100386 (2023).

    CAS  Google Scholar 

  9. Yusuf, S. et al. Polypill with or without aspirin in persons without cardiovascular disease. N. Engl. J. Med. 384, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Manolio, T. A. et al. Genes, environment and the value of prospective cohort studies. Nat. Rev. Genet. 7, 812–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tapia-Conyer, R. et al. Cohort profile: the Mexico City Prospective Study. Int. J. Epidemiol. 35, 243–249 (2006).

    Article  PubMed  Google Scholar 

  13. Collins, R. et al. Global priorities for large-scale biomarker-based prospective cohorts. Cell Genom. 2, 100141 (2022).

    CAS  Google Scholar 

  14. Mayo, K. R. et al. The All of Us Data and Research Center: creating a secure, scalable, and sustainable ecosystem for biomedical research. Annu. Rev. Biomed. Data Sci. 6, 443–464 (2023).

    Google Scholar 

  15. Manolio, T. A. Using the data we have: improving diversity in genomic research. Am. J. Hum. Genet. 105, 233–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finer, S. et al. Cohort profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. Int. J. Epidemiol. 49, 20–21i (2019).

    Article  PubMed Central  Google Scholar 

  17. Wonkam, A. & Adeyemo, A. Leveraging our common African origins to understand human evolution and health. Cell Genom. 3, 100278 (2023).

    CAS  Google Scholar 

  18. Wonkam, A. Sequence three million genomes across Africa. Nature 590, 209–211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fatumo, S. et al. Promoting the genomic revolution in Africa through the Nigerian 100K Genome Project. Nat. Genet. 54, 531–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Adebamowo, C. A. et al. Polygenic risk scores for CARDINAL study. Nat. Genet. 54, 527–530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramsay, M. et al. H3Africa AWI-Gen Collaborative Centre: a resource to study the interplay between genomic and environmental risk factors for cardiometabolic diseases in four sub-Saharan African countries. Glob. Health Epidemiol. Genom. 1, e20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. World Health Organization Advisory Committee on Health and Research. Accelerating Access to Genomics for Global Health: Promotion, Implementation, Collaboration, and Ethical, Legal, and Social Issues: a Report of the WHO Science Council (World Health Organization: 2022).

  23. Smith, J. The next 20 years of human genomics must be more equitable and more open. Nature 590, 183–184 (2021).

    Article  Google Scholar 

  24. Norland, K. et al. Associations of self-reported race, polygenic risk, and social determinants of health with coronary heart disease. J. Am. Coll. Cardiol. (in the press).

  25. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Thelwall, M. et al. Is useful research data usually shared? An investigation of genome-wide association study summary statistics. PLoS ONE 15, e0229578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambert, S. A. et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schatz, M. C. et al. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. Cell Genom. 2, 100085 (2022).

    CAS  Google Scholar 

  29. Page, A. et al. A federated ecosystem for sharing genomic, clinical data. Science 352, 1278–1280 (2016).

    Article  Google Scholar 

  30. Evans, J. P. et al. The National Institutes of Health Patient-Reported Outcomes Measurement Information System (PROMIS): a view from the UK. Patient Relat. Outcome Meas. 9, 345–352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pan, H. et al. Using PhenX measures to identify opportunities for cross-study analysis. Hum. Mutat. 33, 849–857 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khalifa, A. et al. Interoperable genetic lab test reports: mapping key data elements to HL7 FHIR specifications and professional reporting guidelines. J. Am. Med. Inform. Assoc. 28, 2617–2625 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. National Academies of Sciences, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education; Health and Medicine Division; Committee on Population; Board on Health Sciences Policy; Committee on the Use of Race, Ethnicity, and Ancestry as Population Descriptors in Genomics Research. Using Population Descriptors in Genetics and Genomics Research: a New Framework for an Evolving Field (National Academies, 2023).

  34. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Google Scholar 

  36. Kachuri, L. et al. Principles and methods for polygenic risk scores (PRS) across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Norland, K. et al. A linear weighted combination of polygenic scores for a broad range of traits improves prediction of coronary heart disease. Eur. J. Hum. Genet. 32, 209–214 (2024).

    Article  PubMed  Google Scholar 

  38. Schaid, D. J. et al. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, B. C., Biddanda, A., Gunnarsson, Á. F., Cooper, F. & Palamara, P. F. Biobank-scale inference of ancestral recombination graphs enables genealogical analysis of complex traits. Nat. Genet. 55, 768–776 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marnetto, D. et al. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nat. Commun. 11, 1628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 15, e1008500 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koenig, Z. et al. A harmonized public resource of deeply sequenced diverse human genomes. Genome Res. 34, 796–809 (2024).

  44. Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 51, 30–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamiza, A. B. et al. Transferability of genetic risk scores in African populations. Nat. Med. 28, 1163–1166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, J. Y. Commoning genomic solidarity to improve global health equality. Cell Genom. 3, 100405 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moreau, Y. Crack down on genomic surveillance. Nature 576, 36–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Yanes, T. et al. Future implications of polygenic risk scores for life insurance underwriting. NPJ Genom. Med. 9, 25 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lemke, A. A. et al. Addressing underrepresentation in genomics research through community engagement. Am. J. Hum. Genet. 109, 1563–1571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the eMERGE study. Genet. Med. 25, 100006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manolio, T. A. et al. The International Hundred Thousand Plus Cohort Consortium: integrating large-scale cohorts to address global scientific challenges. Lancet Digit. Health 2, e567–e568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Riba, M. et al. The 1+Million Genomes Minimal Dataset for Cancer. Nat. Genet. 56, 733–736 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Jackson, C. S. et al. Facing our history—building an equitable future. Am. J. Hum. Genet. 110, 377–395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fatumo, S. et al. Uganda Genome Resource: a rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2, 100209 (2022).

    CAS  Google Scholar 

  57. Elmonem, M. A. et al. The Egypt Genome Project. Nat. Genet. 56, 1035–1037 (2024).

  58. Mbarek, H. et al. Qatar genome: insights on genomics from the Middle East. Hum. Mutat. 43, 499–510 (2022).

    Article  PubMed  Google Scholar 

  59. Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).

    Article  Google Scholar 

  61. Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell Genom. 3, 100361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feng, Y.-C. A. et al. Taiwan Biobank: a rich biomedical research database of the Taiwanese population. Cell Genom. 2, 100197 (2022).

    CAS  Google Scholar 

  64. Nam, K. et al. Genome-wide study on 72,298 individuals in Korean biobank data for 76 traits. Cell Genom. 2, 100189 (2022).

    CAS  Google Scholar 

  65. Sohail, M. et al. Mexican Biobank advances population and medical genomics of diverse ancestries. Nature 622, 775–783 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Manolio, T. A. et al. Global implementation of genomic medicine: we are not alone. Sci. Transl. Med. 7, 290ps13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y. et al. Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts. Cell Genom. 3, 100241 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.J.K. is supported by the Mayo Center for Individualized Medicine and by the following grants from the US NHGRI: U01 HG11710 (the PRIMED Consortium), U01 HG06379 (the eMERGE Network) and U24 HG09650 (the ClinGen Consortium). I thank investigators in the eMERGE, PRIMED and ClinGen consortia for many helpful discussions and T. Manolio, H. Rehm and S. Gogarten for reading a draft of the manuscript and providing feedback.

Author information

Authors and Affiliations

Authors

Contributions

I.J.K. conceptualized and wrote the manuscript.

Corresponding author

Correspondence to Iftikhar J. Kullo.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review information

Nature Genetics thanks Cristen Willer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullo, I.J. Promoting equity in polygenic risk assessment through global collaboration. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01843-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01843-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing