Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Ruminant Telomere-to-Telomere (RT2T) Consortium

Abstract

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously ‘invisible’ parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the ‘Ruminant T2T Consortium’ (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic relationships of target lineages for the RT2T.

Similar content being viewed by others

References

  1. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, C. et al. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 16, 1715–1718 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 15, 1268–1284 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Nakandala, U. et al. Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes. Hortic. Res. 10, uhad058 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, G. et al. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. Hortic. Res. 10, uhad182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, B. et al. A gap-free reference genome reveals structural variations associated with flowering time in rapeseed (Brassica napus). Hortic. Res. 10, uhad171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hackmann, T. J. & Spain, J. N. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93, 1320–1334 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Minervino, A. H. H., Zava, M., Vecchio, D. & Borghese, A. Bubalus bubalis: a short story. Front. Vet. Sci. 7, 570413 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Google Scholar 

  17. Graphodatsky, A., Perelman, P. & Obrien, S. J. in Atlas of Mammalian Chromosomes 706–857 (John Wiley & Sons, 2020).

  18. Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Ker, D. F. E. & Yang, Y. P. Ruminants: evolutionary past and future impact. Science 364, 1130–1131 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, eaav6335 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, Z. et al. Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus). Science 364, eaav6312 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu, Q. et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 44, 946–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Rice, E. S. et al. Continuous chromosome-scale haplotypes assembled from a single interspecies F1 hybrid of yak and cattle. Gigascience 9, giaa029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lejeune, J. et al. A proposed standard system of nomenclature of human mitotic chromosomes. Lancet 275, 1063–1065 (1960).

  26. Cribiu, E. P. et al. International system for chromosome nomenclature of domestic bovids (ISCNDB 2000). Cytogenet. Cell Genet. 92, 283–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Brown, J. D. & O’Neill, R. J. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu. Rev. Genomics Hum. Genet. 11, 291–316 (2010).

    CAS  Google Scholar 

  28. Potter, S. et al. Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 8, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wurster, D. H. & Benirschke, K. Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168, 1364–1366 (1970).

    Article  CAS  PubMed  Google Scholar 

  30. Vujosevic, M., Rajicic, M. & Blagojevic, J. B chromosomes in populations of mammals revisited. Genes 9, 487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bovine HapMap, C. et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324, 528–532 (2009).

    Article  Google Scholar 

  32. Rexroad, C. et al. Genome to phenome: improving animal health, production, and well-being — a new USDA blueprint for animal genome research 2018–2027. Front. Genet. 10, 327 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kalbfleisch, T. S. et al. A SNP resource for studying North American moose. F1000Res. 7, 40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cherry, S. G., Merkle, J. A., Sigaud, M., Fortin, D. & Wilson, G. A. Managing genetic diversity and extinction risk for a rare plains bison (Bison bison bison) population. Environ. Manage. 64, 553–563 (2019).

    Article  PubMed  Google Scholar 

  35. Theissinger, K. et al. How genomics can help biodiversity conservation. Trends Genet. 39, 545–559 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Paez, S. et al. Reference genomes for conservation. Science 377, 364–366 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Makova, K. D. et al. The complete sequence and comparative analysis of ape sex chromosomes. Nature 630, 401–411 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corbo, M., Damas, J., Bursell, M. G. & Lewin, H. A. Conservation of chromatin conformation in carnivores. Proc. Natl Acad. Sci. USA 119, e2120555119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foissac, S. et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol. 17, 108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spielmann, M., Lupianez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Shanta, O., Noor, A., Human Genome Structural Variation Consortium & Sebat, J. The effects of common structural variants on 3D chromatin structure. BMC Genomics 21, 95 (2020).

    CAS  Google Scholar 

  44. Anania, C. & Lupianez, D. G. Order and disorder: abnormal 3D chromatin organization in human disease. Brief. Funct. Genomics 19, 128–138 (2020).

    Article  Google Scholar 

  45. Liao, Y., Zhang, X., Chakraborty, M. & Emerson, J. J. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res. 31, 397–410 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Safonova, Y. et al. Variations in antibody repertoires correlate with vaccine responses. Genome Res. 32, 791–804 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sok, D. et al. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548, 108–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clark, T. A. et al. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40, e29 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, W. C. et al. The complete methylome of Helicobacter pylori UM032. BMC Genomics 16, 424 (2015).

    Google Scholar 

  52. Payelleville, A. et al. The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines. Sci. Rep. 8, 12091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Tvedte, E. S. et al. Comparison of long-read sequencing technologies in interrogating bacteria and fly genomes. G3 11, jkab083 (2017).

    Article  Google Scholar 

  56. Konstantinidis, I. et al. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics 15, 1052–1067 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Janowitz Koch, I. et al. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol. Ecol. 25, 1838–1855 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 7, 89–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Daetwyler, H. D. et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen, T. V. et al. In it for the long run: perspectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genet. Sel. Evol. 55, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Davenport, K. M. et al. An improved ovine reference genome assembly to facilitate in-depth functional annotation of the sheep genome. Gigascience 11, giab096 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guhlin, J. et al. Species-wide genomics of kākāpō provides tools to accelerate recovery. Nat. Ecol. Evol. 7, 1693–1705 (2023).

    Article  PubMed  Google Scholar 

  63. Hogg, C. J. et al. Threatened Species Initiative: empowering conservation action using genomic resources. Proc. Natl Acad. Sci. USA 119, e2115643118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zurano, J. P. et al. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 133, 256–262 (2019).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the US Department of Agriculture, National Institute of Food and Agriculture (grant 2023-67015-39000). Any mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal-opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

All correspondence should be addressed to B.D.R., R.J.O’N. or T.P.L.S. T.S.K., S.D.M., B.M.M., D.L.A., D.A., G.B., L.M.B., M.J.B.-G., F.B., T.C., E. Chuong, E. Clark, S.C., N.C., C.C., B.W.D., C.G.E., T.F., Y.G., C.G., P.G., J.G., R.G., D.G., D.H., G.A.H., M.H., S.J.H., W.H., E.J., J. Kalleberg, H.K., K.-P.K., J. Koltes, S.K., C.K., T.L., A.L., G.E.L., W.Y.L., H.M., K. McRae, K. Miga, M.M., H.N., T.O., M. Pennell, B.P., M. Pewsner, A.M.P., B.D.P., P.P., T.P., S.R., A. Rhie, M.R., A. Robic, N.R.O., Y.S., G.S., R.D.S., N.S.N., M.S., J.S., P.S., C.S., G.T.-K., G.M.T., C.K.T., C.P.V.T., C.W., R.W., K.W., S.X., L.Y., T.P.L.S., R.J.O’N. and B.D.R. contributed to the vision and framing of the RT2T Consortium and the Perspective.

Corresponding authors

Correspondence to Timothy P. L. Smith, Rachel J. O’Neill or Benjamin D. Rosen.

Ethics declarations

Competing interests

T.S.K., S.D.M., B.M.M., D.L.A., D.A., G.B., L.M.B., M.J.B.-G., F.B., T.C., E. Chuong, E. Clark, S.C., N.C., C.C., B.W.D., C.G.E., T.F., Y.G., C.G., J.G., R.G., D.G., D.H., G.A.H., M.H., S.J.H., W.H., E.J., J. Kalleberg, H.K., K.-P.K., J. Koltes, C.K., T.L., A.L., G.E.L., W.Y.L., H.M., K. McRae, K. Miga, M.M., H.N., T.O., M. Pennell, B.P., M. Pewsner, A.M.P., B.D.P., P.P., T.P., S.R., A. Rhie, M.R., A. Robic, N.R.O., Y.S., G.S., R.D.S., N.S.N., M.S., J.S., P.S., C.S., G.T.-K., G.M.T., C.K.T., C.P.V.T., R.W., K.W., S.X., L.Y., T.P.L.S., and B.D.R. have no competing interests to declare. P.G. is an employee of Colossal Biosciences and Form Bio and has received travel funds to speak at events hosted by Oxford Nanopore Technologies. S.K. and R.J.O’N. have received travel funds to speak at events hosted by Oxford Nanopore Technologies. R.J.O’N. serves on the scientific advisory board of Colossal Biosciences. C.W. is a cofounder and the chief scientific officer of Clareo Biosciences.

Peer review

Peer review information

Nature Genetics thanks Ruidong Xiang, Lingzhao Fang, Tuan V. Nguyen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalbfleisch, T.S., McKay, S.D., Murdoch, B.M. et al. The Ruminant Telomere-to-Telomere (RT2T) Consortium. Nat Genet 56, 1566–1573 (2024). https://doi.org/10.1038/s41588-024-01835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01835-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing