Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking plant genetics with telomere-to-telomere genome assemblies

Abstract

Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of different strategies for developing T2T genome assemblies.
Fig. 2: Applications of T2T genome assemblies for crop improvement.

Similar content being viewed by others

References

  1. Wallace, J. G. et al. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Varshney, R. K. et al. 5Gs for crop genetic improvement. Curr. Opin. Plant Biol. 56, 190–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hou, X., Wang, D., Cheng, Z., Wang, Y. & Jiao, Y. A near-complete assembly of an Arabidopsis thaliana genome. Mol. Plant 15, 1247–1250 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, B. et al. High-quality Arabidopsis thaliana genome assembly with nanopore and HiFi long reads. Genom. Proteom. Bioinform. 20, 4–13 (2022).

    Article  CAS  Google Scholar 

  6. Li, K. et al. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol. Plant 14, 1745–1756 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Song, J.-M. et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 14, 1757–1767 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J. et al. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennetzen, J. L. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15, 621–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hirsch, C. D. & Springer, N. M. Transposable element influences on gene expression in plants. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 157–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Deneweth, J., Van de Peer, Y. & Vermeirssen, V. Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum. BMC Genomics 23, 18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garg, V. et al. Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. J. Adv. Res. 42, 315–329 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Li, G. et al. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon.Hortic. Res. 10, uhad182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peleman, J. D. & van der Voort, J. R. Breeding by design. Trends Plant Sci. 8, 330–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Mehrotra, S. & Goyal, V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom. Proteom. Bioinform. 12, 164–171 (2014).

    Article  Google Scholar 

  16. Navrátilová, P. et al. Prospects of telomere-to-telomere assembly in barley: analysis of sequence gaps in the MorexV3 reference genome. Plant Biotech. J. 20, 1373–1386 (2022).

    Article  Google Scholar 

  17. Ghaffari, R. et al. Maize chromosomal knobs are located in gene-dense areas and suppress local recombination. Chromosoma 122, 67–75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliveira, L. C. & Torres, G. A. Plant centromeres: genetics, epigenetics and evolution. Mol. Biol. Rep. 45, 1491–1497 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Peska, V. & Garcia, S. Origin, diversity, and evolution of telomere sequences in plants. Front. Plant Sci. 11, 117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shakirov, E. V. et al. Plant telomere biology: the green solution to the end-replication problem. Plant Cell 34, 2492–2504 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rogers, S. O. & Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5, 69–76 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Schubert, I. & Lysak, M. A. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet. 27, 207–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, H. & Bennetzen, J. L. Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc. Natl Acad. Sci. USA 109, 21004–21009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, J. & Bennetzen, J. L. Recombination, rearrangement, reshuffling and divergence in a centromeric region of rice. Proc. Natl Acad. Sci. USA 103, 383–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Aguilar, M. & Prieto, P. Telomeres and subtelomeres dynamics in the context of early chromosome interactions during meiosis and their implications in plant breeding. Front. Plant Sci. 12, 672489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Anderson, S. N. et al. Transposable elements contribute to dynamic genome content in maize. Plant J. 100, 1052–1065 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Domínguez, M. et al. The impact of transposable elements on tomato diversity. Nat. Commun. 11, 4058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Makarevitch, I. et al. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 11, e1004915 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yokosho, K., Yamaji, N., Fujii-Kashino, M. & Ma, J. F. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol. 172, 2327–2336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, X. et al. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 41, 120–127 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Kong, W., Wang, Y., Zhang, S., Yu, J. & Zhang, X. Recent advances in assembly of plant complex genomes. Genom. Proteom. Bioinform. 21, 427–439 (2023).

    Article  Google Scholar 

  32. Li, F. et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33, 524–530 (2015).

    Article  PubMed  Google Scholar 

  33. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maccaferri, M. et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Zhuang, W. et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51, 865–876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bertioli, D. J. et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 51, 877–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun. 11, 884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrews, C. A. Natural selection, genetic drift, and gene flow do not act in isolation in natural populations. Nat. Educ. Knowl. 3, 5 (2010).

    Google Scholar 

  40. Driguez, P. et al. LeafGo: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology. Genome Biol. 22, 256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishii, K. et al. A high quality, high molecular weight DNA extraction method for PacBio HiFi genome sequencing of recalcitrant plants. Plant Methods 19, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russo, A. et al. Low-input high-molecular-weight DNA extraction for long-read sequencing from plants of diverse families. Front. Plant Sci. 13, 883897 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE 16, e0257521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, T. et al. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl. Environ. Microbiol. 89, e00605–e00623 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mattei, A. L., Bailly, N. & Meissner, A. DNA methylation: a historical perspective. Trends Genet. 38, 676–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ni, P. et al. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing.Nature Commun. 14, 4054 (2023).

    Article  CAS  Google Scholar 

  48. Method of the Year 2022: long-read sequencing. Nat. Methods 20, 1 (2023).

  49. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Lam, E. T. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Garg, V. et al. Near-gapless genome assemblies of Williams 82 and Lee cultivars for accelerating global soybean research. Plant Genome 16, e20382 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swat, S. et al. Genome-scale de novo assembly using ALGA. Bioinformatics 37, 1644–1651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baaijens, J. A., Aabidine, A. Z. E., Rivals, E. & Schönhuth, A. De novo assembly of viral quasispecies using overlap graphs. Genome Res. 27, 835–848 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gonnella, G. & Kurtz, S. Readjoiner: a fast and memory efficient string graph-based sequence assembler. BMC Bioinformatics 13, 82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22, 549–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28, 1838–1844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bankevich, A., Bzikadze, A. V., Kolmogorov, M., Antipov, D. & Pevzner, P. A. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nat. Biotechnol. 40, 1075–1081 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to DNA fragment assembly. Proc. Natl Acad. Sci. USA 98, 9748–9753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA 108, 1513–1518 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng, H. et al. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods 21, 967–970 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Turner, I., Garimella, K. V., Iqbal, Z. & McVean, G. Integrating long-range connectivity information into de Bruijn graphs. Bioinformatics 34, 2556–2565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naish, M. et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374, eabi7489 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Belser, C. et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 4, 1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng, Y. et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 15, 1268–1284 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, Y. et al. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Hortic. Res. 10, uhad027 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Han, X. et al. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Mol. Plant 16, 452–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, X. et al. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat. Genet. 53, 1250–1259 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    Article  CAS  Google Scholar 

  76. Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 618, 557–565 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, Z. et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14, 1691–1704 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gent, J. I., Wang, N. & Dawe, R. K. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives. Genome Biol. 18, 121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Su, H. et al. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell 31, 2035–2051 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Luo, S. et al. The cotton centromere contains a Ty3-gypsy-like LTR retroelement. PLoS ONE 7, e35261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Findley, S. D. et al. A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185, 727–744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Naish, M. & Henderson, I. R. The structure, function, and evolution of plant centromeres. Genome Res. 34, 161–178 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mascher, M. & Stein, N. Genetic anchoring of whole-genome shotgun assemblies. Front. Genet. 5, 208 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang, J. et al. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences. Bioinformatics 32, 3058–3064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beier, S. et al. Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci. Data 4, 170044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manchanda, N. et al. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. BMC Genomics 21, 193 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  90. Fu, A. et al. Telomere-to-telomere genome assembly of bitter melon (Momordica charantia L. var. abbreviata Ser.) reveals fruit development, composition and ripening genetic characteristics. Hortic. Res 10, uhac228 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, X. et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol. Plant 16, 314–317 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Yu, Y., Zhang, Y., Chen, X. & Chen, Y. Plant noncoding RNAs: hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 35, 407–431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, Z. et al. The prevalence, evolution and chromatin signatures of plant regulatory elements. Nat. Plants 5, 1250–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Bennetzen, J. L. The many hues of plant heterochromatin. Genome Biol. 1, reviews107.1 (2000).

    Article  Google Scholar 

  95. Fernandes, J. B. et al. Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis. Genome Biol. 25, 30 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou, J. et al. Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20, 2051–2063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, Z. et al. Cotton D genome assemblies built with long-read data unveil mechanisms of centromere evolution and stress tolerance divergence. BMC Biol. 19, 115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, N., Gent, J. I. & Dawe, R. K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7, eabe2299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, N. & Dawe, R. K. Centromere size and its relationship to haploid formation in plants. Mol. Plant 11, 398–406 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Schreiber, M., Jayakodi, M., Stein, N. & Mascher, M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat. Rev. Genet. https://doi.org/10.1038/s41576-024-00691-4 (2024).

    Article  PubMed  Google Scholar 

  101. Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148–158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852–860 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schneeberger, K. & Weigel, D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci. 16, 282–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Schneeberger, K. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat. Rev. Genet. 15, 662–676 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Benevenuto, J., Ferrão, L. F. V., Amadeu, R. R. & Munoz, P. How can a high-quality genome assembly help plant breeders? Gigascience 8, giz068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Article  Google Scholar 

  107. Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 13, 1607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, H. et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 11, 2494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Salvi, S. & Tuberosa, R. The crop QTLome comes of age. Curr. Opin. Biotechnol. 32, 179–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Varshney, R. K. et al. Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci. 26, 631–649 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Brinton, J. et al. A haplotype-led approach to increase the precision of wheat breeding. Commun. Biol. 3, 712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bevan, M. W. et al. Genomic innovation for crop improvement. Nature 543, 346–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. He, C., Holme, J. & Anthony, J. SNP genotyping: the KASP assay. Methods Mol. Biol. 1145, 75–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Bohra, A. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance in maize. Nature 386, 485–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Frary, A. et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Cong, B., Barrero, L. S. & Tanksley, S. D. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat. Genet. 40, 800–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Li, C., Zhou, A. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).

    Article  Google Scholar 

  121. Zsögön, A., Cermak, T., Voytas, D. & Peres, L. E. P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci. 256, 120–130 (2017).

    Article  PubMed  Google Scholar 

  122. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    Article  CAS  Google Scholar 

  124. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  Google Scholar 

  125. Takahashi, Y. et al. Domesticating Vigna Stipulacea: a potential legume crop with broad resistance to biotic stresses. Front. Plant Sci. 10, 1607 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156–1170.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, C. et al. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 16, 1715–1718 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, T. et al. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nat. Plants 9, 554–571 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Bi, G. et al. Telomere-to-telomere genome of the model plant Physcomitrium patens. Nat. Plants 10, 327–343 (2024).

    Article  CAS  PubMed  Google Scholar 

  130. Liao, Z. et al. A telomere-to-telomere reference genome of ficus (Ficus hispida) provides new insights into sex determination. Hortic. Res. 11, uhad257 (2024).

    Article  PubMed  Google Scholar 

  131. Pei, T. et al. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. Hortic. Res. 10, uhad235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shen, F. et al. The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits. Nat. Commun. 14, 4102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shi, X. et al. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Hortic. Res. 10, uhad061 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ding, Y. et al. A telomere-to-telomere genome assembly of Hongyingzi, a sorghum cultivar used for Chinese Baijiu production. Crop J. 12, 635–649 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

R.K.V. acknowledges financial support from the Food Futures Institute (FFI) of Murdoch University, as well as the Grains Research & Development Corporation and Hort Innovation supporting research projects on development of genome assemblies in wheat (UMU2404-003RTX, WSU2303-001RTX), legume (UMU2403-009RTX, UMU2303-003RTX) and horticultural crops (AS21006, AS23003). We thank the Pawsey Supercomputing Research Centre for the use of its computing resources in developing genome assemblies at the Centre for Crop & Food Innovation, Murdoch University.

Author information

Authors and Affiliations

Authors

Contributions

R.K.V. conceptualized the idea. V.G. and A.B. developed the first draft with inputs from M.M., M.S., X.X., M.W.B., J.L.B. and R.K.V. V.G., A.B., M.M., J.L.B. and R.K.V. revised the manuscript. V.G. created the schematics for the original figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajeev K. Varshney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Roberto Tuberosa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, V., Bohra, A., Mascher, M. et al. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 56, 1788–1799 (2024). https://doi.org/10.1038/s41588-024-01830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01830-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing