Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Human genetics and genomics

Improving estimates of loss-of-function constraint for short genes

Genetic constraint identifies genes under selection against loss-of-function, but existing methods are inaccurate for shorter genes. A new study overcomes this key limitation to ascribe more confident predictions to all human protein-coding genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A machine-learning model incorporating gene features improves genetic constraint estimates for short genes.

References

  1. Fuller, Z. L., Berg, J. J., Mostafavi, H., Sella, G. & Przeworski, M. Nat. Genet. 51, 772–776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, S. et al. Nature 626, E1 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Lek, M. et al. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karczewski, K. J. et al. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cassa, C. A. et al. Nat. Genet. 49, 806–810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seaby, E. G. et al. Genet. Med. 24, 1697–1707 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. He, X. et al. PLoS Genet. 9, e1003671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaplanis, J. et al. Nature 586, 757–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gudmundsson, S. et al. Hum. Mutat. 43, 1012–1030 (2022).

    Article  PubMed  Google Scholar 

  10. Minikel, E. V. et al. Nature 581, 459–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whiffin, N. et al. Nat. Med. 26, 869–877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pilz, D. T. et al. Hum. Mol. Genet. 7, 2029–2037 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, T. et al. Nat. Genet. https://doi.org/10.1038/s41588-024-01820-9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Singer-Berk, M. et al. Am. J. Hum. Genet. 110, 1496–1508 (2023).

  15. MacArthur, D. G. & Tyler-Smith, C. Hum. Mol. Genet. 19, R125–R130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.W. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (220134/Z/20/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Whiffin.

Ethics declarations

Competing interests

N.W. receives research funding from Novo Nordisk and has consulted for ArgoBio studio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whiffin, N. Improving estimates of loss-of-function constraint for short genes. Nat Genet 56, 1544–1545 (2024). https://doi.org/10.1038/s41588-024-01829-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01829-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing