Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries

Abstract

To effectively reduce vision loss due to age-related macular generation (AMD) on a global scale, knowledge of its genetic architecture in diverse populations is necessary. A critical element, AMD risk profiles in African and Hispanic/Latino ancestries, remains largely unknown. We combined data in the Million Veteran Program with five other cohorts to conduct the first multi-ancestry genome-wide association study of AMD and discovered 63 loci (30 novel). We observe marked cross-ancestry heterogeneity at major risk loci, especially in African-ancestry populations which demonstrate a primary signal in a major histocompatibility complex class II haplotype and reduced risk at the established CFH and ARMS2/HTRA1 loci. Dissecting local ancestry in admixed individuals, we find significantly smaller marginal effect sizes for CFH risk alleles in African ancestry haplotypes. Broadening efforts to include ancestrally distinct populations helped uncover genes and pathways that boost risk in an ancestry-dependent manner and are potential targets for corrective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of AMD GWAS meta-analysis primary and secondary analyses.
Fig. 2: Penetrance and pleiotropy of the AMD PRS.
Fig. 3: GWAS analyses identify 27 novel loci in EA and the first loci in AA and HA.
Fig. 4: MR of pigmentation traits on AMD risk in European ancestries (n = 57,290 cases, 324,430 controls).
Fig. 5: Marked cross-ancestry heterogeneity at major AMD risk loci.
Fig. 6: Local ancestry analysis of the CFH and ARMS2/HTRA1 loci.
Fig. 7: Regional Miami plot of genetically regulated gene and isoform expression at the 1q32 (CD46/CD55) locus.

Similar content being viewed by others

Data availability

The full summary-level association data from the multi-ancestry meta-analysis, ancestry-stratified meta-analyses and individual population association analyses in the MVP, Genentech and the UK Biobank are available via the dbGaP study accession number phs001672.v12.p1. IAMDGC summary statistics are available through http://eaglep.case.edu/iamdgc_web/. GERA AMD GWAS summary statistics are available by reasonable request to Hélène Choquet (Helene.Choquet@kp.org). Polygenic scores based on EA and AA GWAS are deposited in the PGS Catalog (https://www.pgscatalog.org/) with accessions PGS004606 and PGS004607. Data used for brain transcriptome model generation are available from PsychENCODE (http://resource.psychencode.org/); genotypes are controlled data and access instructions are provided at https://www.synapse.org/#!Synapse:syn4921369/wiki/477467. STARNET-based EpiXcan transcriptomic imputation models are available for download at https://labs.icahn.mssm.edu/roussos-lab/resources/. Data used for GTEx-based transcriptomic imputation models are available at https://www.gtexportal.org/home/datasets. MSigDB: http://software.broadinstitute.org/gsea/msigdb. For ancestry-specific linkage disequilibrium r2 with top SNPs in Regional TWAS Miami plots, 1000 G Phase3 v5 was used available at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. REMC: https://egg2.wustl.edu/roadmap/web_portal/. GO datasets were retrieved from the Gary Bader lab (http://download.baderlab.org/EM_Genesets/current_release/Human/entrezgene/GO/). Version Human_GOALL_with_GO_iea_July_01_2021_entrezgene.gmt was used.

Code availability

Software and analytical methods used in data analyses include PrediXcan (https://github.com/hakyimlab/PredictDB-Tutorial) to generate PrediXcan transcriptomic imputation models, EpiXcan (https://bitbucket.org/roussoslab/epixcan/src/master/) to generate EpiXcan transcriptomic imputation models, S-PrediXcan (https://github.com/hakyimlab/MetaXcan) to perform TWAS, PLINK2 (https://www.cog-genomics.org/plink/2.0/) for on-demand generation of ancestry-specific linkage disequilibrium r2 with top SNPs in Regional TWAS Miami plots, GOGO (https://github.com/zwang-bioinformatics/GOGO) for semantic enrichment analysis, and R v.4.2.2 for statistical analyses and plotting (https://www.R-project.org).

References

  1. Fleckenstein, M. et al. Age-related macular degeneration. Nat. Rev. Dis. Primers 7, 31 (2021).

    Article  PubMed  Google Scholar 

  2. Vanderbeek, B. L. et al. Racial differences in age-related macular degeneration rates in the United States: a longitudinal analysis of a managed care network. Am. J. Ophthalmol. 152, 273–282.e3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahr, M. A., Hodge, D. O. & Erie, J. C. Racial differences in age-related macular degeneration and associated anti-vascular endothelial growth factor intravitreal injections among Medicare beneficiaries. Ophthalmol. Retina 2, 1188–1195 (2018).

    Article  PubMed  Google Scholar 

  4. Wang, D., Jiang, Y., He, M., Scheetz, J. & Wang, W. Disparities in the global burden of age-related macular degeneration: An analysis of trends from 1990 to 2015. Curr. Eye Res. 44, 657–663 (2019).

    Article  PubMed  Google Scholar 

  5. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48, 134–143 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  10. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pietzner, M. et al. Genetic architecture of host proteins involved in SARS-CoV-2 infection. Nat. Commun. 11, 6397 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Komatsu, M. & Ruoslahti, E. R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis. Nat. Med. 11, 1346–1350 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Sawada, J., Li, F. & Komatsu, M. R-Ras protein inhibits autophosphorylation of vascular endothelial growth factor receptor 2 in endothelial cells and suppresses receptor activation in tumor vasculature. J. Biol. Chem. 290, 8133–8145 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Vähätupa, M. et al. Lack of R-Ras leads to increased vascular permeability in ischemic retinopathy. Invest. Ophthalmol. Vis. Sci. 57, 4898–4909 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Campbell, R. A. et al. Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide. Blood 138, 977–988 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fawcett, K. A. et al. Pleiotropic associations of heterozygosity for the SERPINA1 Z allele in the UK Biobank. ERJ Open Res. 7, 00049–2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yin, X. et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 13, 1644 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Simcoe, M. J. et al. Genome-wide association study identifies two common loci associated with pigment dispersion syndrome/pigmentary glaucoma and implicates myopia in its development. Ophthalmology 129, 626–636 (2022).

    Article  PubMed  Google Scholar 

  23. Simcoe, M. et al. Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Sci. Adv. 7, eabd1239 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hysi, P. G. et al. Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability. Nat. Genet. 50, 652–656 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liyanage, U. E. et al. Combined analysis of keratinocyte cancers identifies novel genome-wide loci. Hum. Mol. Genet. 28, 3148–3160 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Visconti, A. et al. Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure. Nat. Commun. 9, 1684 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lundgren, S. et al. Tissue distribution of human gp330/megalin, a putative Ca2+-sensing protein. J. Histochem. Cytochem. 45, 383–392 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Storm, T., Heegaard, S., Christensen, E. I. & Nielsen, R. Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice. Cell Tissue Res. 358, 99–107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Noel, N. C. L. & MacDonald, I. M. RP1L1 and inherited photoreceptor disease: A review. Surv. Ophthalmol. 65, 725–739 (2020).

    Article  PubMed  Google Scholar 

  31. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zeng, B. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161–169 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hughes, A. E. et al. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat. Genet. 38, 1173–1177 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Sivakumaran, T. A. et al. A 32 kb critical region excluding Y402H in CFH mediates risk for age-related macular degeneration. PLoS ONE 6, e25598 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Holmes, L. V. et al. Determining the population frequency of the CFHR3/CFHR1 deletion at 1q32. PLoS ONE 8, e60352 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cipriani, V. et al. Increased circulating levels of factor H-related protein 4 are strongly associated with age-related macular degeneration. Nat. Commun. 11, 778 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pappas, C. M. et al. Protective chromosome 1q32 haplotypes mitigate risk for age-related macular degeneration associated with the CFH-CFHR5 and ARMS2/HTRA1 loci. Hum. Genomics 15, 60 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cipriani, V. et al. Beyond factor H: the impact of genetic-risk variants for age-related macular degeneration on circulating factor-H-like 1 and factor-H-related protein concentrations. Am. J. Hum. Genet. 108, 1385–1400 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zheng, X. et al. HIBAG–HLA genotype imputation with attribute bagging. Pharmacogenomics J. 14, 192–200 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Megiorni, F. & Pizzuti, A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: practical implications of the HLA molecular typing. J. Biomed. Sci. 19, 88 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kutszegi, N. et al. HLA-DRB1*07:01-HLA-DQA1*02:01-HLA-DQB1*02:02 haplotype is associated with a high risk of asparaginase hypersensitivity in acute lymphoblastic leukemia. Haematologica 102, 1578–1586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fernandez, C. A. et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood 124, 1266–1276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kutszegi, N. et al. Two tagging single-nucleotide polymorphisms to capture HLA-DRB1*07:01-DQA1*02:01-DQB1*02:02 haplotype associated with asparaginase hypersensitivity. Br. J. Clin. Pharmacol. 87, 2542–2548 (2021).

    Article  PubMed  CAS  Google Scholar 

  48. Mullins, R. F., Russell, S. R., Anderson, D. H. & Hageman, G. S. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, W. et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat. Commun. 10, 3834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ratnapriya, R. et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat. Genet. 51, 606–610 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  53. Franzén, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, Y. et al. ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies. Am. J. Hum. Genet. 104, 410–421 (2019).

  55. Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

    Article  PubMed  Google Scholar 

  56. Strunz, T. et al. A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration. Sci. Rep. 10, 1584 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).

    Article  PubMed  Google Scholar 

  59. Randolph, H. E. et al. Genetic ancestry effects on the response to viral infection are pervasive but cell type specific. Science 374, 1127–1133 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Klein, B. E. K. et al. Sunlight exposure, pigmentation, and incident age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 55, 5855–5861 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Halladay, C. W. et al. Genetically-guided algorithm development and sample size optimization for age-related macular degeneration cases and controls in electronic health records from the VA Million Veteran Program. AMIA Jt Summits Transl. Sci. Proc. 2019, 153–162 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen, H. et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am. J. Hum. Genet. 98, 653–666 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shen, L. et al. Differences in the genetic susceptibility to age-related macular degeneration clinical subtypes. Invest. Ophthalmol. Vis. Sci. 56, 4290–4299 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jorgenson, E. et al. Common coding variants in the HLA-DQB1 region confer susceptibility to age-related macular degeneration. Eur. J. Hum. Genet. 24, 1049–1055 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Heinze, G. & Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 21, 2409–2419 (2002).

    Article  PubMed  Google Scholar 

  74. Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mao, X. et al. A genomewide admixture mapping panel for Hispanic/Latino populations. Am. J. Hum. Genet. 80, 1171–1178 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

  79. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mizrahi-Man, O. et al. Novel genotyping algorithms for rare variants significantly improve the accuracy of Applied BiosystemsTM AxiomTM array genotyping calls: Retrospective evaluation of UK Biobank array data. PLoS ONE 17, e0277680 (2022).

  81. Cirulli, E. T. et al. Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts. Nat. Commun. 11, 542 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

  85. Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

  86. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Fullard, J. F. et al. Single-nucleus transcriptome analysis of human brain immune response in patients with severe COVID-19. Genome Med. 13, 118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

  92. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

  95. Zhao, C. & Wang, Z. GOGO: An improved algorithm to measure the semantic similarity between gene ontology terms. Sci. Rep. 8, 15107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Article  Google Scholar 

  97. Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J. Classif. 31, 274–295 (2014).

    Article  Google Scholar 

  98. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

  99. Feinerer, I., Hornik, K. & Meyer, D. Text mining infrastructure in R. J. Stat. Softw. 25, 1–54 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The unsung heroes of this publication are the US veterans who participated in this study and contributed their time and effort to improve the lives of all veterans and populations worldwide. Key individuals who collected, curated or cleaned data for the MVP are listed in the Supplementary Information. Dr. Igo passed away during the drafting of this paper and is remembered for his tireless contributions. We are further grateful to Catherine Tcheandjieu and Elizabeth Atkinson for advice on local ancestry inference and Tractor implementation, and to Jonathan Haines and Rachel Mester (UCLA) for comments on an earlier version of the manuscript. Finally, we wish to acknowledge the UK Biobank Eye and Vision Consortium who helped collect the eye phenotypes in the UK Biobank. This research has been conducted using the UK Biobank Resource under Application Number 2112. Support from the VA Office of Research & Development is acknowledged by N.S.P. (I01BX003364, I01BX04557, IK6BX005233), P.R. (I01BX004189) and S.J.F. (IK6BX005787). We acknowledge NIH support to P.R. (R01AG050986, R01AG065582, R01AG067025, R01MH125246, U01MH116442), to G.V. (K08MH122911), to H.C. and E.J. (R01EY027004) and to R.B.M., J.Y. and H.C. (RC2AG036607). We acknowledge NIH Core Grants to the Departments of Ophthalmology at Case Western Reserve University (P30EY011373) and Cleveland Clinic School of Medicine at Case Western Reserve University (P30EY025585) and unrestricted support from Research to Prevent Blindness to the Departments of Ophthalmology at Case Western Reserve University, Cleveland Clinic School of Medicine at Case Western Reserve University, and SUNY Buffalo. The IAMDGC acknowledges support from the NIH (R01EY022310, X01HG006934). This project was supported by the Clinical and Translational Science Collaborative of Cleveland (UL1TR002548). S.K.I. was supported by the International Retinal Research Foundation. P.G.H. received support from the BrightFocus Foundation. This research was supported by the Robert Wood Johnson Foundation, Research Program on Genes, the Environment and Health Wayne and Gladys Valley Foundation, the Ellison Medical Foundation and Kaiser Permanente Community Benefit Programs. The UK Biobank Eye and Vision Consortium is supported by grants from Moorfields Eye Charity, The NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, the Alcon Research Institute, and the International Glaucoma Association (UK). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Veterans Affairs or any agency of the US federal government.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization: B.R.G., G.V., R.P.I., P.R., N.S.P., S.K.I. Acquisition, analysis or interpretation of data: B.R.G., G.V., R.P.I., T.K., C.W.H., T.B.B., B.Z., S.V., J.N.C.B., D.C.C., K.M., F.D., P.A.S., W.Z., T.H., M.D.A., A.S., R.B.M., J.Y., H.C., R.K., K.P., P.J.P., B.L.Y., E.J., P.G.H., A.J.L., J.M.G., P.S.T., S.J.F., J.M.S., P.B.G., W.-C.W., T.L.A., S.P., P.R., N.S.P., S.K.I. Drafting of the manuscript: B.R.G., G.V., R.P.I., P.R., N.S.P., S.K.I. Critical revision of the manuscript for important intellectual content: B.R.G., G.V., T.K., T.B.B., J.N.C.B., D.C.C., P.G.H., A.J.L., S.J.F., H.C., B.L.Y., P.B.G., P.R., N.S.P., S.K.I.

Corresponding authors

Correspondence to Panos Roussos, Neal S. Peachey or Sudha K. Iyengar.

Ethics declarations

Competing interests

A.S. and B.L.Y. are employees of Genentech/Roche and hold stock and stock options in Roche. E.J. is an employee and a stockholder of Regeneron Genetics Center. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Qi Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 PRS distribution of AMD cases and controls.

(a) Distribution of the normalized PRS in cases and controls in MVP EA. (b) Hazard ratio (95% CI) by PRS decile for time-to-AMD-diagnosis in unrelated EA in a Cox proportional hazards model, with the first decile as reference (n = 436,374; 32,357 events). (c) Distribution of the normalized PRS in AA. (d) Hazard ratio (95% CI) by PRS decile in unrelated AA (n = 112,182; 2,332 events). (e) Distribution of the normalized PRS in HA. (f) Hazard ratio (95% CI) by PRS decile in unrelated HA (n = 47,668; 1,631 events). The PRS was constructed using weights derived from the IAMDGC European-ancestry GWAS8.

Extended Data Fig. 2 Conditional analysis of PLTP and MMP9 signals in the 20q13 locus.

Regional association plots of: (a) the EA meta-analysis, demonstrating a primary signal near PLTP; (b) the IAMDGC study8, demonstrating a primary signal near MMP9; (c) the EA meta-analysis conditioned on the index SNP from the IAMDGC study (rs1888235); (d) the IAMDGC study conditioned on the index SNP from the EA meta-analysis (rs17447545). LD values were calculated in the MVP EA cohort. The dashed line denotes genome-wide significance (5 × 10−8).

Extended Data Fig. 3 Local ancestry decomposition of the ARMS2/HTRA1 locus.

(a) Regional association plots of AMD risk at ARMS2/HTRA1 in a standard GWAS in AA individuals (top), and the EUR (middle) and AFR (bottom) tracts from the Tractor analysis. (b) Regional association plots of AMD risk at ARMS2/HTRA1 in a standard GWAS in HA individuals (top), followed by the EUR ancestry tract, NAT ancestry tract, and AFR ancestry tract (bottom) from the Tractor analysis. The dashed line denotes genome-wide significance (5 × 10−8). LD r2 was calculated relative to the ARMS2 A69S allele using the best matched ancestry panel. Odds ratios for the ARMS2 A69S allele are given in Fig. 6.

Extended Data Fig. 4 Characterization of TWAS results across tissues.

(a) Pearson correlation of AMD association z-scores across the 38 tissues analyzed from GTEx, EyeGEx, STARNET, and PEC. (b) Hierarchical clustering of tissues based on AMD associations using Ward’s linkage method.

Extended Data Fig. 5 Gene set enrichment analysis (GSEA) of TWAS genes.

(a) GSEA of TWAS using the DLPFC transcripts (genes and isoforms) model, and (b) the multi-tissue meta-analysis. Enrichment odds ratios and 95% confidence intervals for the top ten enrichments by effect size are presented.

Extended Data Fig. 6 Semantic clustering of enriched gene ontology (GO) terms in the AMD multi-tissue transcriptome-wide association study (TWAS) identifies immune and lipid homeostasis functions.

First, we performed enrichment of AMD TWAS associated genes (FDR < 0.05 in ACAT meta-analysis of all tissues) for GO terms corresponding to ontologies of molecular functions (MFO), biological processes (BPO), and cellular components (CCO). Semantic clustering of the GO terms that had enrichment FDR < 0.1 (Fisher’s exact test) and could be clustered identified 7 clusters (BPO1-BPO5, CCO1, and MFO1). For each of these clusters we provide a word cloud based on the description of the GO terms where words that appear more frequently are larger; clusters are ordered from left to right and top to bottom from the most significant to the least significant based on their meta-analyzed p-value (ACAT). Major themes that are associated with AMD are immune functions and lipid homeostasis.

Extended Data Fig. 7 Enrichment of rare variant burden associations in TWAS meta-analysis genes.

TWAS meta-analysis genes were those with FDR < 0.05; only protein-coding genes were considered (12 rare variant gene sets were considered from the rare variant analysis). Mask 1: Loss of function mutations only; Mask 2: Loss of function + missense mutations; Mask 3: Loss of function + missense + splice mutations. Enrichment odds ratios and 95% confidence intervals are presented. In addition to CFH and CFI, genes prioritized by this analysis include CETP, ABCA7, ELP5 and B3GLCT.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary Discussion, Supplementary Figs. 1–7, Legends to Supplementary Tables 1–32 and References.

Reporting Summary

Supplementary Tables 1–32

Supplementary tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorman, B.R., Voloudakis, G., Igo, R.P. et al. Genome-wide association analyses identify distinct genetic architectures for age-related macular degeneration across ancestries. Nat Genet 56, 2659–2671 (2024). https://doi.org/10.1038/s41588-024-01764-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01764-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing