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Analysis of somatic mutations in whole blood 
from 200,618 individuals identifies pervasive 
positive selection and novel drivers of clonal 
hematopoiesis

Nicholas Bernstein1,4, Michael Spencer Chapman    2,3,4, Kudzai Nyamondo    2,3, 
Zhenghao Chen1, Nicholas Williams    2, Emily Mitchell2,3, Peter J. Campbell    2, 
Robert L. Cohen    1  & Jyoti Nangalia    2,3 

Human aging is marked by the emergence of a tapestry of clonal expansions 
in dividing tissues, particularly evident in blood as clonal hematopoiesis 
(CH). CH, linked to cancer risk and aging-related phenotypes, often stems 
from somatic mutations in a set of established genes. However, the majority 
of clones lack known drivers. Here we infer gene-level positive selection in 
whole blood exomes from 200,618 individuals in UK Biobank. We identify 
17 additional genes, ZBTB33, ZNF318, ZNF234, SPRED2, SH2B3, SRCAP, 
SIK3, SRSF1, CHEK2, CCDC115, CCL22, BAX, YLPM1, MYD88, MTA2, MAGEC3 
and IGLL5, under positive selection at a population level, and validate 
this selection pattern in 10,837 whole genomes from single-cell-derived 
hematopoietic colonies. Clones with mutations in these genes grow in 
frequency and size with age, comparable to classical CH drivers. They 
correlate with heightened risk of infection, death and hematological 
malignancy, highlighting the significance of these additional genes in the 
aging process.

Human cells accumulate somatic mutations, leading to an evolving 
tapestry of clones throughout our tissues as we age1–10. The inferred 
mechanism in replicating tissues is that a stem cell gains a mutation 
providing a fitness benefit, leading to a clonal expansion due to selec-
tion rather than drift11–13. Clones with increased fitness from specific 
mutations can certainly drive cancer14–16, but expanded clones can 
influence other diseases both directly, as in chronic liver disease, and 
through indirect mechanisms, such as in blood17–21.

In the past decade, genomic sequencing of blood samples has 
revealed that clonal hematopoiesis (CH) is common in elderly indi-
viduals with apparently normal hematopoiesis, with large-scale ret-
rospective studies identifying associations of CH with hematological 

malignancies, cardiovascular disease and all-cause mortality22. Initial 
estimates identified CH in >10% of those over the age of 70 when screen-
ing for mutations in a known set of genes23. However, the prevalence of 
CH is highly dependent on the sensitivity of sequencing assays, with 
very small CH clones reported in most individuals over the age of 50 
when using highly sensitive sequencing24. Bulk approaches generally 
detect one to two small clones in individuals. Using single-cell sequenc-
ing approaches, dozens of parallel clonal expansions can, in fact, be 
found in blood in all individuals by the seventh to eighth decade of life, 
with most expansions lacking known driver mutations25,26. Similarly, CH 
identified on the basis of the presence of passenger mutations within 
clones that lack known driver mutations has been shown to account for 
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were under positive selection as measured by dN/dS in UKBB (Sup-
plementary Table 2). This includes the most frequently mutated and 
recognizable drivers of CH such as mutated TET2, DNMT3A, ASXL1, 
PPM1D, JAK2, TP53, SRSF2 and SF3B1 (Fig. 1c) and also less frequently 
mutated BRCC3, PHIP, CBL, KDM6A, GNB2 and GNAS. Genes within 
this canonical set for CH (Supplementary Table 3) found to be under 
positive selection we call ‘classical fitness-inferred drivers’. U2AF1 may 
be missing from this set due to recognized issues with the hg38 refer-
ence assembly genome33. We identify a high dN/dS ratio for missense 
variation in DNMT3A and TET2, but not for ASXL1 and PPM1D (Supple-
mentary Table 2), in agreement with the known mutation landscape in 
these drivers34. We initially identified 18 genes with large significant 
dN/dS ratios not in the canonical set of 74 CH genes (Supplementary 
Table 2). To ensure the additional genes identified were not a reflec-
tion of our mutation calling strategy, we validated our approach by 
independently calling somatic mutations in the additional and clas-
sical CH genes using Shearwater35 and retesting for selection using 
dN/dS (Extended Data Fig. 1b). A total of 96.1% of variants identified 
by Mutect2 were independently called by Shearwater (Supplemen-
tary Tables 4 and 5), with all additional and classical CH genes also 
under strong positive selection with the sole exception of DUSP22. 
We called the remaining set of 17 genes ‘new fitness-inferred driv-
ers’ of CH, to distinguish them from the classical set of CH genes, as 
shown in Fig. 1c,d (Supplementary Table 6). These genes—BAX, CCL22, 
CCDC115, CHEK2, IGLL5, SH2B3, SIK3, SPRED2, SRCAP, SRFS1, MAGEC3, 
MTA2, MYD88, YLPM1, ZBTB33, ZNF234 and ZNF318—included novel 
genes, recently reported candidate drivers of CH in independent 
datasets, and some previously reported in association with malig-
nancy (Supplementary Table 6). Mutations in these genes had dN/
dS ratios between 5 and 660 (indicating that there were 5–660 times 
more nonsynonymous mutations than expected by chance for these 
genes) (Fig. 1c and Supplementary Table 2). Many previously reported 
genes associated with CH were not found to be under significant posi-
tive selection in UKBB (Supplementary Table 2), such as RUNX1, PTEN 
and CUX1, which may reflect their mutation infrequency, their lower 
prevalence in healthy individuals compared to those with hematologi-
cal malignancy, or the sensitivity of sequencing in UKBB. Such genes 
within the canonical set of CH (as defined in refs. 17,32; Supplementary 
Table 3) that were not under positive selection in UKBB we call ‘classical  
non-fitness-inferred drivers’.

Overall, 23% of UKBB (47,026 individuals) had a detectable muta-
tion in a classical or new CH gene. A total of 51,264 somatic variants 
were found in classical fitness-inferred (n = 45,770) and classical 
non-fitness-inferred (n = 5,494) CH genes, and an additional 5,294 vari-
ants were found in new fitness-inferred CH genes. Non-‘DTA’ (DNMT3A, 
TET2 and ASXL1 mutated) CH was boosted by >50%. As expected, both 
the VAF and population frequency for classical drivers of CH increased 
with age in the UKBB (Fig. 1e,f). Crucially, new fitness-inferred CH gene 
mutation frequency also increased with age (Fig. 1e, β = 0.00015, P value 

the majority of CH in blood10,27,28. As a result, there are ongoing efforts to 
comprehensively map the drivers of CH29 to better understand clonal 
selection and aging phenotypes of blood.

The UK Biobank (UKBB) provides a large cohort with which to 
assess gene fitness effects and their associated health effects30. In this 
Article, we exploited the idea that a gene can be identified as under posi-
tive selection if one finds an enrichment of nonsynonymous mutations 
compared to neutral synonymous mutations within that gene’s coding 
sequence11 and comprehensively examine 200,618 UKBB exomes of 
blood-derived buffy coat for the presence of positive selection leading 
to clonal expansions. We validate our findings in 10,837 genomes from 
single-cell-derived hematopoietic cells and examine the associated 
clinical phenotypes and outcomes, as reported here.

Results
Global positive selection in 200,618 whole blood exomes
We analyzed whole blood exome sequencing from 200,618 UKBB indi-
viduals aged 40–70 years (Extended Data Fig. 1a) to identify somatic 
mutations in blood. Following variant calling using Mutect2 (ref. 31) and 
stringent filtering to remove artifacts and germline variants (Methods), 
we initially identified 52,701 putative coding somatic variants across 
38,211 individuals (Supplementary Table 1 and Extended Data Fig. 1b). 
As expected, the fraction of individuals with somatic mutations, their 
variant allele frequency (VAF) and number of somatic mutations per 
individual increased with age (Fig. 1a). Using the normalized ratio of 
nonsynonymous to synonymous somatic mutations (dN/dS, R package 
dNdScv) across all variants, as well as on a per gene basis, we were able to 
distinguish genes and specific mutations under purifying, neutral and 
positive selection11 (Methods, Fig. 1b and Supplementary Table 2). Glob-
ally, we found that, across all types of nonsynonymous coding muta-
tion, the dN/dS ratio was 1.13 (95% confidence interval (CI) 1.11–1.16; 
Fig. 1b), suggesting that one in every eight (CI 7–10) nonsynonymous 
mutations detected in this dataset was under selection. Specifically, 1 
in every 8–11 missense mutations, 1 in every 4–5 truncating mutations 
and 1 in ~3 splicing mutations (predominantly affecting DNMT3A; Sup-
plementary Table 2) showed evidence of positive selection in blood. 
Positive dN/dS was found in both young and older individuals (Extended 
Data Fig. 1c–e), suggesting that the rate of entry of somatic mutations 
under selection may not be significantly different over this age range. 
These data validate our recent findings of pervasive positive selection 
on somatic mutations from >3,000 single-cell-derived whole genomes 
from a small number of healthy individuals25 and extend these obser-
vations to blood of the UK population, as represented by samples col-
lected by the UKBB.

Novel fitness-inferred CH drivers are common and increase 
with age
Of the set of 74 genes typically used to identify CH from recently 
published large population studies17,32 (Supplementary Table 3), 14 

Fig. 1 | Pervasive selection in whole blood exomes in UKBB. a, Exome-wide 
somatic mutation frequency, VAF and mutation counts in individuals increase 
with age. The error bars represent 2× standard error of the mean. The smoothed 
line represents a second-degree polynomial fit of the actual data, and the 
shading represents the CI. N = 200,618. b, Left: dN/dS is the normalized ratio 
of nonsynonymous to synonymous mutations. dN represents the rate of 
nonsynonymous mutations per nonsynonymous site, and dS represents the 
rate of synonymous mutations per synonymous site. A dN/dS of ~1 is expected 
under neutrality. Genes with a dN/dS ratio >1, taking into account a trinucleotide-
specific mutation rate, indicates the gene is under positive selection (‘fitness 
inferred’, FI). HSCs with a mutation under positive selection will clonally 
expand to result in CH. Right: global positive selection in blood detectable at 
missense, essential splice site and truncating mutations (comprising nonsense 
substitutions and frameshift insertions/deletions). Nonsynonymous mutations 
comprise missense and nonsense single base substitutions. The error bars 

represent the 95% CI of the dN/dS parameter for that mutation type. N = 52,701 
mutations. c, Classical fitness-inferred (FI) CH genes (in blue), Classical non-
fitness-inferred (non-FI) genes (in green), and new fitness-inferred (FI) CH genes 
(in orange) representing both novel genes and several recently reported. The 
graph shows the dN/dS ratio for nonsense and/or missense variants >1, q value 
<0.1, plotting the maximum dN/dS value. d. New fitness-inferred CH genes (in 
orange) alongside classical fitness-inferred CH genes (in blue), and the types 
of nonsynonymous mutation they are under positive selection for. e,f, The 
frequency of individuals (e) and mutation log(VAF) (f) for new and classical FI 
CH genes and classical non-FI CH genes versus age. The error bars represent the 
2× standard error of the mean. The smoothed line represents a second-degree 
polynomial fit of the actual data, and the shading represents the CI. N = 200,618 
individuals. g, The number of individuals in UKBB with detectable somatic 
mutations in driver genes associated with CH. h, The number of individuals 
carrying CH conferring variants per gene.
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<0.001) and showed a strikingly similar VAF distribution to classical 
fitness-inferred CH genes (β = 0.00852, P value <0.001; Fig. 1f).

When restricting to only larger CH clones (VAF > 0.1), 1.8% of the 
UKBB exome cohort (n = 3,565) had at least one classical CH mutation, 
similar to other studies of this age range and sequencing sensitivity10,32. 
Of these, classical fitness-inferred drivers were present in 3,228 individ-
uals and classical non-fitness-inferred drivers affected 371 individuals, 
with 34 individuals carrying mutations in both CH categories. A total of 
681 variants (VAF > 0.1) in new fitness-inferred drivers were identified 
in 660 individuals (Fig. 1g), the majority of whom (93%, n = 613) did not 
otherwise harbor mutations in classical CH genes, thus representing 
an 18% increase to the cohort of individuals with large clone (VAF > 0.1) 
CH in UKBB.

On a per gene basis, new fitness-inferred drivers were among the 
most common associated with CH status in individuals in the UKBB 
(Fig. 1h), with many genes showing distinct mutation landscapes 
(Fig. 2a). Of these, BAX, CHEK2, SH2B3 and MYD88 mutations were 
also recently identified as candidate markers of CH in blood from 
patients with other tumors29, with CHEK2 mutations associated with 
chemotherapy exposure29,36, and BAX mutations reported following 
BCL2 inhibitor therapy in chronic lymphocytic leukemia (CLL)37.

Several of the genes identified have been reported in myeloid or 
lymphoid malignancies. Mutations in MYD88 are well recognized in 
Waldenstroms macroglobulinemia and diffuse large B cell lymphoma 
but also CLL and IgM monoclonal gammopathy of uncertain signifi-
cance38,39. CCL2 mutations have been reported in chronic lymphopro-
liferative disorder of natural killer cells40, and IGLL5 mutations in CLL41 
and diffuse large B cell lymphoma42. It is therefore likely that these 
mutations derive from the lymphoid compartment in blood. MTA2 
and MAGEC3 mutations have been reported rarely in acute myeloid 
leukemia10,43 and T cell acute lymphoblastic leukemia44 respectively, 
where their significance is uncertain, and SH2B3 mutations have been 
reported in myeloproliferative neoplasms45.

Four genes (ZNF318, YLPM1, SRCAP and ZBTB33) were also recently 
identified as new drivers of CH in whole blood exomes from the ExAC 
database46, with mutational landscapes similar to those in UKBB. Trun-
cating mutations in SIK3, SPRED2 and ZNF234, as well as missense muta-
tions in SRSF1, have not been previously described in blood but were 
under positive selection in UKBB. Most new CH genes are expressed 
throughout the hematopoietic compartment, with IGLL5 and CCL22 
gene expression restricted to B cells47 (Extended Data Fig. 2a).

To appreciate how these additional fitness-inferred genes drive 
CH in the context of more commonly studied CH mutations, and which 
regions of these genes may be relevant for conferring fitness (Fig. 2b), 
we inferred mutation-specific fitness effects as described recently12 
for variants identified >20 times in UKBB (regardless of clone size; 
Extended Data Fig. 1b). We find that several of these new fitness-inferred 
driver genes confer some of the strongest fitness effects (Fig. 2b). For 
example, mutations such as MTA2 p.Asp289Gly and p.Asp293Gly, 
SPRED2 p.Val56Phe and SRSF1 p.Glu60Asp confer comparable fitness 
effects to the hotspot variant DNMT3AR882H and other drivers of CH12, 
providing a clonal advantage that corresponds to an excess hematopoi-
etic stem cell (HSC) division rate of 15–20% per year (Fig. 2b). Mutations 

in the SANT domain of MTA2, required for recruitment of HDAC1 and 
nucleosome remodeling, confer particularly strong fitness (Fig. 2d). 
Interestingly, the most commonly mutated new fitness-inferred driver 
gene site, MYD88 p.Leu273Pro (also commonly referred to as Leu265Pro 
when protein annotation uses transcript ENST00000396334), was 
not among sites conferring strong selection (Fig. 2b), and recurrent 
mutations at this site might be observed because of an intrinsically 
high mutation rate (Fig. 2c) rather than strong selection.

Additional CH drivers under selection in blood colonies
To further validate these additional fitness-inferred drivers and 
identify the cell types affected, we looked for corresponding muta-
tions in several large datasets we have recently published comprising 
whole-genome sequencing (WGS) of single-cell-derived hematopoietic 
colonies from individuals with healthy hematopoiesis and blood can-
cers13,25,26,48–50. Clonal WGS data do not suffer from the same artifacts as 
bulk exome sequencing data, thereby also providing robust orthogonal 
validation. The combined data comprised WGS from a total of 10,837 
individual HSC, myeloid and lymphoid single-cell-derived colonies, 
from 50 individuals with either healthy hematopoiesis or blood cancer. 
This includes 10,202 colonies derived from myeloid progenitors and 
stem cells from healthy aging individuals25,26,48, cord blood25, human 
fetal hematopoiesis25,49, individuals who have undergone allogeneic 
stem cell transplantation50, individuals with myeloproliferative neo-
plasms13, additional myeloid malignancies such as therapy-related 
acute myeloid leukemia, chronic myeloid leukemia and essential 
thrombocythemia), and 635 B/T cell-derived lymphoid colonies48. In 
total, 150 nonsynonymous variants were identified in 16 of the 17 new 
fitness-inferred CH drivers across these individuals (Supplementary 
Tables 7 and 9).

Within the myeloid datasets (both healthy hematopoiesis and 
hematological disease), we found 127 variants within 15/17 new 
fitness-inferred driver genes (Supplementary Table 7), with the major-
ity (n = 102) of mutations detected in colonies from healthy individuals 
(Supplementary Table 10). Ten genes had evidence of positive selec-
tion by dN/dS (CHEK2, SRCAP, ZNF318, ZBTB33, MAGEC3, SPRED2, SIK3, 
YLPM1, BAX and SH2B3, q value <0.1, restricted hypothesis testing) with 
the mutation landscapes resembling those found in the UKBB data 
(Supplementary Table 8). Mutations that are either rarely acquired, 
or only selected for in a subset of individuals, may not have been vali-
dated by dN/dS due to the far lower number of individuals in the clonal 
WGS dataset (17 healthy individuals, 10 allogeneic stem cell transplant 
recipients and 23 individuals with blood cancers).

Within the lymphoid clonal WGS data, among other variants in new 
fitness-inferred CH genes, there were 15 nonsynonymous mutations 
in IGLL5—a gene found at the immunoglobulin lambda locus—found 
in three healthy individuals (Supplementary Table 9), and this was 
the only gene found here to be under selection by dNdScv. This sug-
gests that somatic mutations within the lymphoid compartment are 
driving their occurrence in bulk whole blood exome sequencing in 
UKBB. Intriguingly, 14/15 mutations in IGLL5 occurred in memory  
B cell-derived colonies, even though, overall, memory B cells accounted 
for <12% of the lymphoid dataset. Overall ~15% of memory B cell colonies 

Fig. 2 | New CH gene-specific mutation landscapes and fitness effects. a, 
Location and type of mutation across the gene body for new drivers of CH. Filled 
black circles, missense mutations; filled white circles, truncating mutations 
(frameshift indel or nonsense mutations). b, Twenty-five recurrently mutated 
sites with the highest estimated fitness effects include several mutations in new 
CH driver genes. The error bars for the inferred fitness effect and mutation rate 
parameters are the CI. The number of observations of VAF for each mutation used 
to infer parameters is presented in Supplementary Table 4. c, Ten recurrently 
mutated sites with the highest estimated mutation rate. Of note, MYD88 
Leu273Pro, which lies outside the SANT domain, has one of the highest mutation 
rates within the dataset but did not have a significantly increased fitness effect. 

The error bars for the inferred fitness effect and mutation rate parameters 
are the CI. The number of observations of VAF for each mutation used to infer 
parameters is presented in Supplementary Table 4. d, Fitness estimates for MTA2 
plotted across the gene body, which primarily localize to the SANT domain. The 
error bars for the inferred fitness effect and mutation rate parameters are the CI. 
The number of observations of VAF for each mutation used to infer parameters 
is presented in Supplementary Table 4. Amino acid positions are colored by the 
gene elements shown in the key. Orange shading refers to new fitness-inferred 
genes of CH; classical fitness-inferred genes of CH are shown in blue, and classical 
non-fitness-inferred CH genes are shown in green.
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had IGLL5 mutations. Both synonymous and nonsynonymous muta-
tions clustered around the N-terminus in B cell-derived colonies from 
healthy individuals and in whole blood exome sequencing in UKBB 
(Fig. 2a), a finding also echoed in IGLL5 mutations in lymphoid neo-
plasms found in the COSMIC database34. This implies that the gene 
may be subject to highly localized mutational processes—for example, 
during B cell somatic hypermutation41—that could invalidate assump-
tions underlying the dN/dS methodology. This raises the possibility 
that mutations in IGLL5 may be a passenger event during memory B 
cell expansion rather than driving clonal expansion themselves. No 
mutations in other suspected lymphoid genes, for example, MYD88, 
were found in this dataset, though it is notable that not all lymphoid 
compartments were represented within the single-cell-derived lym-
phoid colonies.

Overall, across >10,000 single-cell-derived clonal hematopoietic 
cell colonies derived from 50 individuals, we identified 150 somatic 
mutations in 16 of the 17 new fitness-inferred drivers, with a strikingly 

similar pattern of nonsynonymous mutations to bulk whole-exome 
sequencing data from UKBB. The majority of variants (n = 125 of 150) 
were from myeloid and lymphoid colonies from individuals with 
healthy hematopoiesis (Supplementary Table 10), with no history of 
malignancy or chemotherapy exposure, demonstrating that positive 
selection acts on mutations in new fitness-inferred CH genes during 
healthy hematopoiesis. Importantly, 10 of the 17 new fitness-inferred 
CH genes were also under positive selection, as estimated by dN/dS in 
single-cell-derived colonies from a small set of individuals, validating 
UKBB findings. Two of the remaining seven genes (SRSF1 and MTA2) 
did show independent evidence of positive selection based on the 
distribution of the VAFs of recurrently mutated sites (Fig. 2b). Exclud-
ing IGLL5, the significance of which remains to be determined, and 
MYD88, a previously reported driver of lymphoid malignancies, there 
are three remaining genes (CCDC115, ZNF234 and CCL22) identified 
as under positive selection in UKBB that we could not independently 
validate. While two ZNF234 variants were found in hematopoietic 
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proportional HRs for a range of poor health outcomes against CH categories 
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health outcomes are shown in a, hematological malignancies are shown in b, 
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The smoothed line represents a second-degree polynomial fit of the actual 
data, and the shading represents the CI. N = 200,618 individuals. f, log(HR) with 
the 95% CI plotted for different categories of CH across poor health outcomes. 
N = 200,618 individuals. The orange shading refers to new fitness-inferred genes 
of CH, classical fitness-inferred genes of CH are shown in dark blue, classical 
non-fitness-inferred CH genes are shown in green, CH clones with copy number 
aberrations on autosomes are shown in purple, and CH clones without detectable 
candidate driver mutations are shown in light blue.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01755-1

colonies, including one nonsense mutation, and a missense mutation 
in CCL22 was present in a naive B cell colony, these numbers were too 
low to display gene-wide positive selection. Incidentally, these three 
genes were also the least frequently mutated in UKBB, and they should 
be considered provisional CH genes pending future studies of larger 
datasets where their potentially increased variant numbers may allow 
further elucidation.

Increased risk of hematological neoplasm, death and 
infection
The UKBB provides continuously updated electronic health records 
that we used to assess for the impact of clonal expansions associated 
with new fitness-inferred CH genes on subsequent health events (Sup-
plementary Table 11). Many of the new fitness-inferred CH drivers have 
been proposed as candidate drivers of CH previously, or are known 
to be mutated in specific hematological malignancies (Supplemen-
tary Table 6), but their clinical associations have not been character-
ized at a population scale. We considered individuals with CH driver 
mutations at an allele frequency of >0.1 (Supplementary Table 5) as the 
clinical effect of CH is known to be attenuated in smaller clones17,51,52. 
Individuals were removed from association analyses if they had chronic 
obstructive pulmonary disease (COPD), myocardial infarction or stroke, 
nonhematological malignancy and hematological malignancy events 
before blood draw for whole-exome sequencing, as well as if there 
was a mismatch between X chromosome zygosity and reported sex53. 
We performed a Cox-proportional hazard regression to assess for the 
association of drivers of CH (both new and classical, VAF >0.1) with 
hematological malignancies. We found that new fitness-inferred driver 
genes confer a significant hazard for hematological malignancy (Fig. 3a, 
log(hazard ratio (HR)) 1.5, P value <0.001) similar to recognized drivers 
of CH. This hazard is strongest for common lymphoid malignancies 
(Fig. 3b, CLM, log(HR) 1.9, P value <0.001), driven primarily by muta-
tions in MYD88 (log(odds ratio (OR)) 2.5, P value <0.001) associating 
with chronic lymphoid malignancy, and IGLL5 (log(OR) 2.8, P value 
<0.001) associating with acute lymphoblastic leukemia and chronic 
lymphoid malignancy, with weaker associations with other malignan-
cies (Extended Data Fig. 2b,c). Both genes have been reported as drivers 
of lymphoid malignancies38,39,41,42. The presence of mutations in many 
new fitness-inferred CH genes were mirrored by changes in periph-
eral blood counts, with ZBTB33 mutations associated with increased 
myeloid counts and MYD88/IGLL5 mutations associated with abnormal 
lymphocyte counts (Fig. 3c).

CH has been associated with increased risk for myocardial infarc-
tion, ischemic events, COPD and all-cause mortality17,18,54,55. Similar to 
classical fitness-inferred drivers, individuals with new fitness-inferred 
driver mutations also have a significantly increased hazard for death 
(Fig. 3a, P = 0.01, log(HR) 0.36). Crucially, incidence of poor health 
outcomes was dependent on clone size, which is a phenomenon also 
observed in classical CH55 (Extended Data Fig. 3). Recently, mosaic 
copy number variants in blood were associated with an increased risk 
for a wide range of infections20. CH driven by nonsynonymous/short 
indel mutations have not yet been shown to confer an increased risk for 
these outcomes. We show here that all categorizations of CH associate 
with increased hazards for infections, intestinal infectious diseases 
and pneumonia (Fig. 3d).

The majority of clonal expansions remain unexplained
‘Driverless’ CH is the occurrence of clonal expansions in blood without a 
known driver10,25 and is estimated to drive the majority of clonal expan-
sions in the elderly. We identified individuals with a high mutational 
burden without any known CH driver (as identified by this study; Meth-
ods) or copy number variants (as described in ref. 56). We confirm that 
‘driverless’ CH in UKBB is very common and increases with age as previ-
ously seen (Fig. 3e), conferring a significantly increased risk for COPD 
and hematological malignancies but not all-cause mortality (Fig. 3f).

An ongoing debate is whether ‘driverless’ CH is caused by somatic 
driver mutations that are yet to be identified, nongenetic factors (for 
example, epigenetic changes) or neutral drift. Our dN/dS analysis of 
mutations >0.11 VAF—indicating that 1/8 of nonsynonymous mutations 
are under positive selection—suggests that unrecognized driver muta-
tions still remain a large contributor. With our expanded definition 
of CH, we estimate that we now identify ~50% (CI 43–59%) of the total 
number of drivers of CH in blood (Supplementary Note 1). This is an 
increase on previous estimates of positive selection in blood27 and sug-
gests that we are now ‘halfway there’ to identifying driver mutations 
that are able to produce large clones in blood. Since dNdScv appears to 
linearly recover increased numbers of drivers of CH within this cohort 
(Supplementary Note 2), there would be merit in a future substantially 
larger study combining genome sequencing of several different popula-
tion cohorts to identify further genes under positive selection in blood.

Discussion
Somatic mutation acquisition in human cells occurs stochastically, 
reflecting tissue-specific rates and mutational processes, with only 
a minority of these mutations confering a fitness advantage that 
drives clonal expansion. However, recent studies have suggested that 
clonal selection on somatic mutations in blood extends beyond that 
attributable to known driver mutations in a set of <100 genes10,25,27. 
In whole blood exomes from ~200,000 individuals from UKBB, over 
10% of nonsynonymous mutations that we identified may be under 
positive selection. Of note, the high dN/dS ratios in UKBB whole blood 
exomes compared to other studies25 could be due to ascertainment 
bias. First, bulk exome sequencing data will only capture mutations that 
occurred before the expansion of the most recent common ancestor 
of a detectable clone, and not any subsequent mutations. Secondly, 
in the absence of single-molecule sequencing, driver mutations that 
occurred earlier in life are more likely to be captured than later driver 
mutation acquisitions due to the greater duration for clonal expansion. 
Both of these factors could have the impact of inflating the number of 
driver mutations compared to background mutations. Nevertheless, 
at a gene-specific level, we identify 17 further candidates in this clonal 
apparatus. While some of these genes have been recently reported as 
candidate drivers46, or identified in the context of concurrent malig-
nancies29 and therapy36,37,56, here we show that positive selection on 
these genes is detectable in unselected populations, within individu-
als with healthy myeloid and/or lymphoid hematopoiesis, and that 
those who carry a nonsynonymous mutation in these genes (at VAF 
>0.1) having significantly increased hazards for a wide range of adverse  
health outcomes.

In this study, we used one of the many methods available to identify 
regions within exome sequences that are under positive selection to 
identify additional driver mutations in whole blood exomes (restricted 
to those associated with large clones >0.1) together with validation of 
positive selection in single-cell-derived hematopoietic myeloid and 
lymphoid colonies. Inclusion of mutations in these fitness-inferred CH 
genes increases the prevalence of CH (restricted to large clones >0.1) by 
18% in the UKBB cohort. Other methods that infer selection coefficients 
from variant VAFs12 or mosaic copy number variants20,56 may lead to 
more CH driving loci associated with poor health outcomes. Studies 
of different hematopoietic populations, such as HSCs or specific lym-
phoid populations not represented in whole blood, may also identify 
additional genetic sites under positive selection. Nevertheless, it is 
clear that many drivers of clonal expansion in blood are still unknown, 
in stark contrast to other tissues such as the esophagus, where our 
compendium of fitness-inferring somatic mutations appears much 
more complete27. Future efforts enabling characterization of smaller 
clonal expansions, using both more sensitive and less error-prone 
sequencing technologies, as well as combined population datasets, 
will enable a more comprehensive examination of the evolutionary 
substrate under positive selection in blood.
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The pervasive impact of age-associated oligoclonality and 
gene-specific clonal expansions on health outcomes is increasingly 
clear. Future research is needed to determine the extent to which aging 
phenotypes are encoded by the landscape of clonal expansions, in 
both blood and other self-renewing tissues, to determine the degree 
to which modulating the burden of somatically mutated clones can 
improve health outcomes.
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Methods
Ethics statement
Informed consent was obtained for all individuals providing samples 
for hematopoietic colonies under NHS Research Ethics Committee 
approval 18/EE/0199 and 07/MRE/44. Participants for in-house whole 
genomes were recruited under Cambridge Blood and Stem Cell Biobank 
ethics, 18/EE/0199 and 07/MRE/44, following written informed con-
sent, and for published genomes as reported previously13,25,26,48–50. 
UKBB analysis was conducted using the UKBB resource under appli-
cation 18448.

Somatic variant calling in UKBB and dNdScv analysis
Putative somatic variants were initially identified using Mutect2 (ref. 
31) (broadinstitute/gatk:4.1.3.0) from exome sequencing CRAM files 
(UKBB resources 23143 and 23144). We used 1000 Genomes, ExAC 
and gnomAD to remove sequencing artifacts and common germline 
single-nucleotide polymorphisms (SNPs)57–59. Variants were called 
within target capture regions (UKBB resource 3801) and 100 bp either 
side and annotated using SNPeff60 (v4_3) and dbSNP build GRCh38.86. 
A total of 83,396,753 putative variants underwent quality control filter-
ing to remove (1) variants with a median base quality difference of >5 
between the alternate and reference allele, (2) mutation sites showing 
extreme strand bias (P < 0.01, chi-square test) due to overrepresenta-
tion of sequencing artifacts61, (3) variants with features commonly 
associated with false positives, such as alleles only supported by the 
end of the read, or reads with excessive edit distance, using FINGs v1.7.1  
(ref. 62) (using thresholds as follows: minbasequality 30, zeropropor-
tion 0.05, minmapquality 50, minmapqualitydifference 5, enddistance 
10, enddistancemad 3, editdistance 4, maxoaftumor 0.04, maxsecond-
tumor 0.05, foxog 0.9, snvcluster50 2, snvcluster100 4, repeats 12), (4) 
indels with 10 or fewer reads supporting the alternate allele17, and (5) 
variants in the gene MUC, olfactory genes and genes with recurrent 
synonymous mutations due to high rates of false positivity63,64. Vari-
ants with VAF <0.11 and <3 reads supporting the alternate allele were 
also excluded to reduce false positive mutations. This threshold was 
chosen because our desired number of false positive mutations was 
<1 for the entire exome cohort. The total number of sites tested for 
our project is equal to the size of the targeted exome region in UKBB 
(38,997,831 base pairs65) times the number of individuals (200,618). 
Given a sequencing error in 1/1,000 base pairs, we wanted to find the 
VAF threshold for the median locus depth, 45 reads, which would lead 
to <1 false positive somatic mutation from sequencing error. Using 
the formula Number of false positives = Number of bases tested xse-
quencing error(median loci depth × VAF), led to the choice of a VAF threshold 
of 0.11. Additional filters were applied to remove (1) variants which 
appeared germline (binomial test, P = 0.5, n represents depth of locus, 
k represents read count of alternate allele, P < 1 × 10−4), (2) variants 
with a −log10 population minor allele frequency in gnomAD of <3.35 
as this threshold allowed removal of germline variants while retaining 
known drivers of CH common in gnomAD, such as JAK2V617F, (3) variants 
that occurred more often than DNMT3AR882H as well as mutations with 
more than 50% of their occurrences having a VAF >0.15 (ref. 46), (4) 
variants in homopolymers regions of length 4 (ref. 66), (5) high depth 
(>150×) variants, and (6) variants within 50 bp of one another. A total 
of 52,701 variants remained following the above filtering (Extended 
Data Fig. 1b). U2AF1 mutations may have been missing from this list of 
variants due to recognized issues with mutation calling relating to the 
hg38 reference assembly genome33. We used dNdScv11 (https://github.
com/im3sanger/dndscv) to perform neutrality tests by calculating dN/
dS ratios on the 52,701 filtered Mutect2 variants on both a global and a 
per gene level for different classes of mutations (missense, nonsense, 
indel and essential splice site). A dN/dS ratio >1 for any type of variation 
(q value <0.1) was considered evidence of positive selection. To validate 
both variants and genes under selection, and to gain sensitivity for 
detecting low VAF clones in putative genes of interest, we next ran the 

somatic variant caller Shearwater35 (v3_11) on all 200,618 UKBB exomes 
for all classical (Supplementary Table 3) and new fitness-inferred CH 
genes (Supplementary Table 6). We included uniquely mapped reads 
with mapping quality >30. CosmicCodingMut.vcf from COSMIC v94  
(ref. 34) was used to create a prior of Shearwater. We considered var-
iants to validate our Mutect2 call with a Bayes factor <0.5. Finally, 
we reran dNdScv only on the intersection of variants (96.1%) that 
were called by both Mutect2 and Shearwater. All new and classical 
fitness-inferred driver genes except DUSP22 were still under significant 
positive selection using these high-quality validated variant calls. 
DUSP22 was removed from subsequent analysis.

Determining CH status in UKBB and clinical correlates
We began with the union of unfiltered variant calls from Shearwa-
ter and Mutect2 to identify which variants would confer CH status 
(Extended Data Fig. 1b). Shearwater variants were included only if 
they were recurrently found (n > 5) in the Mutect2 call set. We then 
removed variants with (1) VAF >0.5 unless they were on chromosome 
X in males, (2) excess strand bias as described above, (3) a −log10 popu-
lation minor allele frequency <3.35 according to gnomAD, and (4) if 
>50% of a variant’s occurrences had a VAF >0.15. We required variants 
to have an allele frequency of >0.1 as the clinical effect of CH is known 
to be decreased in smaller clones17,51,52. This provided the final variant 
list for conferring CH status. We divided CH identifying genes into 
three categories: (1) classical fitness-inferred drivers, that is, previously 
described genes in CH17,32 under positive selection in UKBB; (2) classical 
non-fitness-inferred drivers, that is, mutations in genes historically 
associated with CH but not found to be under positive selection in 
the UKBB; (3) new fitness-inferred drivers, that is, mutations in both 
novel genes and several recently reported genes that have not routinely 
been used to identify CH status and under strong positive selection 
in UKBB. Genes were under differential selection for missense versus 
nonsense mutation. For example, MTA2 was under positive selection 
only for missense variation according to dNdScv, so only missense 
variants in MTA2 were considered to confer new fitness-inferred CH 
status. For nonsense variation, any truncating variant was used to 
confer new fitness-inferred CH status. We used linear regression to 
identify relationships between age and frequency of each category 
of CH as well as log(VAF). The log (VAF) distribution was assumed to 
be normal, but this was not formally tested. We identified poor health 
outcome events and their corresponding dates from UKBB data (Sup-
plementary Table 11). Individuals were removed from association 
analyses if they had COPD, Myocardial infarct-stroke, nonhemato-
logical malignancy and hematological malignancy events before blood 
draw, and if there was a mismatch between X chromosome zygosity 
and reported sex53. We used Cox-proportional hazard regression with 
new fitness-inferred CH status, classical fitness-inferred CH status, 
classical non-fitness-inferred status, body fat percentage, pack-years 
of smoking, age at recruitment, age at recruitment2, self-reported sex, 
hypertension, systolic, diastolic, low-density lipoprotein, high-density 
lipoprotein, cholesterol and type 2 diabetes, as covariates (Supple-
mentary Table 12). Per gene effects for genes mutated in >30 indi-
viduals in UKBB were inferred using logistic regression using Python 
statsmodels (0.12.2) for each health outcome as described above  
(Supplementary Table 13).

Inferring fitness coefficients for recurrently mutated sites
We performed maximum likelihood estimates for the fitness parameter 
of the 150 most commonly mutated sites in the UKBB, following the 
method described by Watson et al.12. We included all variants at these 
sites called by Shearwater or Mutect2 with VAF <0.5. Fitness effects were 
estimated as selection coefficients (s), which represents the increased 
birth rate of an HSC relative to wild-type HSCs as a result of the driver 
mutation. We estimated Nτ, where N represents the total number of 
HSCs and τ represents the time in years between symmetric divisions, 

http://www.nature.com/naturegenetics
https://github.com/im3sanger/dndscv
https://github.com/im3sanger/dndscv
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and σ, the standard deviation of the age of the cohort using the most 
common mutation in our cohort, DNMT3AR882H. Our estimated parame-
ters for Nτ (140,000) and s (0.159) were similar to previous estimates2,12. 
We removed variants from consideration where the CI for s was >0.2.

Determining mosaic CNV and ‘driverless’ CH status and 
clinical correlates
Individuals with mosaic CNV were identified from Loh et al.67. To iden-
tify large ‘driverless’ CH, we identified individuals with an excessive 
number of somatic mutations10 (≥95th percentile, n = 3 somatic muta-
tions). We removed individuals with known driver mutations (VAF 
>0.02) or autosomal mosaic CNV events. This identified 5,873 individu-
als with ‘driverless’ CH. To identify associated clinical outcomes, we 
used the same set of outcomes and covariates as described above for 
our Cox-proportional hazard regression for individuals with >0.1 cell 
fraction of mosaic CNV and all identified ‘driverless’ CH.

Gene expression and gene set enrichment
We visualized normalized expression log(transcripts per million 
sequencing reads) data of sequenced bulk RNA from sorted normal, 
preleukemic and leukemic cells of the hematopoietic lineage from 
Corces et al.47 (GSE74912) plotting mean log(transcripts per million 
sequencing reads) per cell type for each gene on a heatmap. Gene set 
enrichment analysis was performed using the q-value ranked list of 
genes from dNdScv to identify significantly enriched (false discovery 
rate (FDR) cutoff of 0.1) MSigDB hallmark gene sets68,69.

dN/dS analysis of mutations from hematopoietic colonies
WGS of single-cell-derived colonies was derived from publis
hed13,25,26,48–50 and unpublished datasets. Mutations from published 
single-cell colony datasets13,25,26,48–50 and unpublished datasets were 
divided by whether they contained predominantly hematopoietic 
stem cell/multipotent progenitor (HSC/MPP) and myeloid progeni-
tor colonies, or lymphoid colonies. The myeloid and HSC/MPP data-
sets included those where colonies were grown on methylcellulose 
agar or were flow-sorted HSC/MPPs. Given that colonies from the 
same individual may share somatic mutations that occurred in a 
common ancestor, we only considered unique mutations from each 
individual. Combined mutation sets across patients were analyzed 
using the dndscv function from the R package ‘dndscv’ (https://
github.com/im3sanger/dndscv) using default settings except for 
the following arguments: max_muts_per_gene_per_sample = Inf, 
use_indel_sites=T, max_coding_muts_per_sample = Inf. This part of 
the analysis was not aimed at new driver discovery but rather vali-
dation of the new genes discovered from UKBB data. Therefore, 
analysis was restricted to the 17 new genes: SPRED2, MTA2, YLPM1, 
ZBTB33, ZNF318, ZNF234, SRSF1, IGLL5, MYD88, SIK3, CHEK2, MAGEC3, 
CCDC115, BAX, SRCAP, SH2B3 and CCL22, which were set within the 
‘gene_list’ argument of the dndscv function. Genes were considered 
to have evidence of positive selection if the reported dN/dS q value 
was <0.1 for missense mutations, truncating variants, all substitutions  
or indels.

Peripheral blood count associations with CH
To quantify the impact of new genes associated with CH on peripheral 
blood counts, we used the complete blood count parameters obtained 
by the UKBB. These parameters allowed us to categorize individuals 
into five categories: high myeloid cell parameters, low myeloid cell 
parameters, lymphocytosis, lymphopenia and normal blood count 
parameters, as previously described70. We then used logistic regres-
sion using the Python package stansmodels (0.12.2) to identify the 
relationship between each peripheral blood count abnormality and 
the new genes associated with CH using the individuals with normal 
blood count parameters as the control group. Pack-years smoking, 
age at recruitment and sex were used as covariates.

Statistics and reproducibility statement
No statistical methods were used to predetermine sample sizes. 
No data were excluded from the analysis. The experiments were 
not randomized and the investigators were not blinded to alloca-
tion during experiments and outcome assessment. Data collec-
tion and analysis were not performed blind to the conditions of the  
experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Individual level data will be uploaded to UKBB in keeping with UKBB’s 
data sharing agreement. Nonindividualized mutation data have been 
provided in the supplementary tables. Hematopoietic colony-level 
data are available as follows: (1) healthy hematopoietic colonies (WGS 
accession numbers EGAD00001007684 and EGAD00001007851), 
(2) myeloproliferative neoplasm colonies (WGS accession number 
EGAD00001007714), (3) fetal hematopoiesis colonies (WGS accession 
number EGAD00001006162), (4) lymphoid colonies (WGS accession 
number EGAD00001008107), (5) chronic myeloid leukemia colonies 
(WGS accession number EGAD00001015353), (6) allogeneic stem cell 
transplant (WGS accession number EGAD00001010872) and (7) single 
individual with therapy-related acute myeloid leukemia (WGS acces-
sion number EGAD00001015339). Source code for figures has been 
provided as Supplementary Information. Source data are provided 
with this paper.

Code availability
Code for analyses is available online at https://doi.org/10.5281/
zenodo.10891332 ref. 71 and can also be found at https://github.com/nan-
galialab/UKBB_ClonalHaem_Novel_Drivers as well as at https://github.
com/mspencerchapman/Pervasive_positive_selection_in_blood.
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Extended Data Fig. 1 | Variant calling, global selection and somatic mutations 
in UK Biobank. a. Age distribution from UKBB. b. Pipeline for identifying exome 
wide selection on somatic mutations and new genes under positive selection in 
UKBB. c. Global dN/dS estimates per age group. Error bars represent the 95% CI of 

the dN/dS parameter for that mutation type and age group. N = 52,701 mutations. 
d. Percent of mutation type per age group. e. Number of mutations for each 
mutation type per age group.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Gene expression and poor health outcome associations 
of recurrently mutated clonal haematopoiesis genes. Gene expression of new 
‘fitness-inferred’ (FI)-driver genes in haematopoietic compartment. Expression 
data was taken from Corces et al.47. Common lymphoid progenitor, CLP; 
megakaryocyte-erythroid progenitor cell, MEP; common myeloid progenitor, 
CMP; granulocyte-macrophage progenitor cell, GMP; lymphoid-primed 
multipotent progenitor cell, LMPP; preleukemic HSC, pHSC; leukemia stem cells, 
LSC; erythroid cell, Ery; leukemic blast cell, blasts; multipotent progenitor cell, 
MPP; Mono, monocyte; NK cell, natural killer cell; HSC, haematopoietic stem cell. 
b, c. Logistic regression log odds ratios for a wide range of poor health outcomes 

for commonly mutated (genes with >35 mutations) driver genes of CH. Error 
bars represent the 95% CI. N = 200,618 individuals. Note the log odds ratio for 
JAK2 mutations and MPN is shown as ‘>’ as it is >5 (5.96, 95% CI 5.56–6.36). Acute 
lymphoblastic leukaemia, ALL; Common lymphoid malignancies, CLM; multiple 
myeloma and related, MM; chronic myeloid leukaemia, CML; acute myeloid 
leukaemia, AML; myelodysplastic diseases, MDS; myeloproliferative neoplasms, 
MPN; acute upper respiratory infection, AURI; acute lower respiratory infection, 
ALRI; intestinal infections, II. Orange shading refers to new FI genes of CH; 
classical FI genes of CH are shown in blue, and classical non FI CH genes are shown 
in green.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Clone size effect on poor health outcomes. Clone 
size effect on poor-health outcomes (malignancy, stroke, death, different 
haematological neoplasms and infections) incidence by CH driver mutation 
category. Poor health outcomes incidence increases as clone variant allele 
frequency increases to 0.1 after which the relationship becomes unstable 
which has been noted previously for DNMT3A and TET2 mutant clones and 

cardiovascular risk. Error bars represent the 2*standard error of the mean 
incidence. The smoothed line represents a second degree polynomial fit of 
the actual data and the shading represents the 95% CI. N = 200,618 individuals. 
Orange shading refers to new FI genes of CH; classical FI genes of CH are shown in 
blue, and classical non FI CH genes are shown in green.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection UKBiobank exome sequencing CRAM files were obtained from UKBiobank resources 23143 and 23144. Variant calling files for single cell 
derived haematopoietic colonies was available internally at the Sanger Institute, and for published works, also available publically as detailed 
in the following papers (Mitchell et al, Nature 2022, Williams et al, Nature 2022, Spencer Chapman et al, Nature 2021, Fabre et al, Nature 
2022, Machado et al, Nature 2022, Spencer Chapman et al, Blood 2022. Diagnoses of individuals with haematopoietic colony sequencing were 
as provided by previous publications or as collected following informed consent under NHS Research Ethics Committee approval 18/EE/0199 
and 07/MRE/44.

Data analysis Mutect2 (broadinstitute/gatk:4.1.3.0) and Shearwater (v3_11, Gerstung et al, Bioinformatics 2014) were used for variant identification. 1000 
genomes, ExAC and gnomAD were used to remove sequencing artefacts and common germline SNPs. Variants were called within target 
capture regions (UKBB resource 3801) and 100bps either side and annotated using SNPeff (v4_3) and dbSNP build GRCh38.86. Variants with 
features commonly associated with false positives, such as alleles only supported by the end of the read, or reads with excessive edit distance, 
were excluded using FINGs v1.7.1. The R package dNdScv (https://github.com/im3sanger/dndscv) was used to detect gene and global level 
positive selection using default settings except for the following arguments: max_muts_per_gene_per_sample = Inf, use_indel_sites=T, 
max_coding_muts_per_sample = Inf. COSMIC v94 (Tate et al Nucleic Acids 2019) was used to create a prior for Shearwater (v3_11). Gene set 
enrichment analysis and gene expression was analysed using data from Corces et al (GSE74912).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Individual level data will be uploaded to UKBB in keeping with UKBB’s data sharing agreement. Non individualised mutation data has been provided in the 
Supplementary Tables. Code for analyses has been made available online at  https://github.com/nangalialab/UKBB_ClonalHaem_Novel_Drivers and https://
github.com/mspencerchapman/Pervasive_positive_selection_in_blood.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and gender were considered in the study design - where reported gender did not match X chromosome zygosity in UKBB, 
samples were excluded from further analysis. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No hypotheses related to clonal haematopoiesis and race, ethnicity or socially relevant grouping were asked in this study.

Population characteristics UKBiobank population characteristics were as previously described in Bycroft et al Nature 2018. We also analysed 10837 
colonies from 50 individuals from pre-birth to >80 years of age: 10,202 colonies derived from myeloid progenitors and stem 
cells from healthy ageing individuals (Mitchell et al 2022, Fabre et al 2022), , cord blood (Mitchell et al Nature 2022), human 
foetal haematopoiesis (Spencer Chapman et al Nature 2021),  individuals who have undergone allogeneic stem cell 
transplantation (Spencer Chapman et al, Blood 2022), individuals with myeloproliferative neoplasms (Williams et al, Nature 
2022), additional datasets from additional myeloid malignancies such as therapy-related acute myeloid leukemia, chronic 
myeloid leukaemia and essential thrombocythaemia), and 635 B-/T-cell derived lymphoid colonies (Machado et al, Nature 
2022)

Recruitment For the UKBiobank analysis, recruitment was undertaken by UK Biobank. For the analyses of single-cell derived 
haematopoietic colonies from individuals with healthy haematopoiesis and haematological malignancies, we used previously 
published data. Individuals with sequencing data from unpublished datasets were recruited under Cambridge Blood and 
Stem Cell Biobank ethics, 18/EE/0199 and 07/MRE/44.

Ethics oversight For single cell derived colonies, Ethics oversight was by the Eastern Multi-region Ethics Committee and under Cambridge 
Blood and Stem Cell Biobank ethics, 18/EE/0199 and 07/MRE/44.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The full UKBiobank dataset of 200K exomes was used for the study. For single cell derived colonies, we maximised the number of individuals 
and colonies based on published datasets and additional sequencing available. No sample size calculations were performed, however, we 
intended on using at least 10,000 single cell derived colonies (or interrogation of effectively 10,000 haematopoietic stem cells) to be 
sufficiently powered to detect , the dN/dS ratios observed for the additional genes in UKBB, were these mutations also to be found in the 
colony datasets. 

Data exclusions For UKBiobank, individuals were removed from association analyses if they had COPD, MI-Stroke, non-haematological malignancy, and 
haematological malignancy events prior to blood draw, and if there was a mismatch between X chromosome zygosity and reported gender. 
For haematopoietic colonies, all samples were considered for dn/ds analysis. 

Replication To validate mutations identified by Mutect (broadinstitute/gatk:4.1.3.0) , Shearwater (v3_11) was used for variant calling. dN/dS (dNdSc 
(https://github.com/im3sanger/dndscv)) was performed on both the Mutect calls, and on the intersection of Mutect and Shearwater 
validated calls too. Of 18 genes originally identified as under selection using Mutect for variant identification, 17 genes validated when using 
Shearwater. DUSP22 did not validate and was excluded from further analysis. Further validation was sought by calling identifying mutations in 
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novel genes associated with clonal haematopoiesis in whole genomes of single cell derived colonies as detailed in the methods section of the 
manuscript.

Randomization The analysis or study design was not randomised as no therapy was being tested as part of a clinical trial.

Blinding Data analysis and collection was not performed blind and the investigators were not blinded to the allocation during analysis or outcome 
assessment. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration N/A

Study protocol The study was conducted using UK Biobank under application number 18448. Haematopoietic colony samples were collected under 
research ethics committee approval 18/EE/0199 and 07/MRE/44.

Data collection Data collection was conducted by UKBiobank. For single cell derived haematopoietic colonies, no clinical data was required from 
participants beyond the haematological diagnosis which was gathered from the previous publications of the datasets or under 
Cambridge Blood and Stem Cell Biobank ethics, 18/EE/0199 nad 07/MRE/44.

Outcomes We identified poor-health outcomes events and their corresponding dates from UKBB data as detailed in Supplementary table 10. 
Individuals were removed from association analyses if they had COPD, MI-Stroke, non-haematological malignancy, and 
haematological malignancy events prior to blood draw, and if there was a mismatch between X chromosome zygosity and reported 
gender. No outcomes were measured from haematopoietic colony data.
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