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Single-cell mtDNA dynamics in tumors 
is driven by coregulation of nuclear and 
mitochondrial genomes
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Marc J. Williams    2, Sohrab Salehi2, Hongyu Shi2, Adam C. Weiner    2, 
Nick Ceglia2, Tyler Funnell    2, Tricia Park    2, Sonia Boscenco2, 
Ciara H. O’Flanagan4, Hui Jiang    3, Diljot Grewal2, Cerise Tang2, Nicole Rusk    2, 
Payam A. Gammage    5,6, Andrew McPherson2, Sam Aparicio    4, 
Sohrab P. Shah    2  & Ed Reznik    2 

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) 
copy number and genotype, and the phenotypic and evolutionary 
consequences of such variation, are poorly characterized. Here we 
use amplification-free single-cell whole-genome sequencing (Direct 
Library Prep (DLP+)) to simultaneously assay mtDNA copy number and 
nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized 
cell lines, patient-derived xenografts and primary human tumors. Cells 
typically contained thousands of mtDNA copies, but variation in mtDNA 
copy number was extensive and strongly associated with cell size. 
Pervasive whole-genome doubling events in nuDNA associated w it h s to-
ichiometrically balanced adaptations in mtDNA copy number, implying 
that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, 
mediated downstream phenotypes. Finally, multimodal analysis of DLP+ 
and single-cell RNA sequencing identified both somatic loss-of-function and 
germline noncoding variants in mtDNA linked to heteroplasmy-dependent 
changes in mtDNA copy number and mitochondrial transcription, revealing 
phenotypic adaptations to disrupted nuclear/mitochondrial balance.

Tumors commonly accumulate mutations and copy number altera-
tions to mitochondrial DNA (mtDNA)1,2. The functional effects of these 
genetic changes on cell metabolism3,4, apoptotic potential5,6, innate 
immunity7 and other phenotypes depend on at least the following 
two key factors: the fraction of mutated mitochondrial genomes in 
the cell (heteroplasmy) and the total number of mtDNAs in the cell 
(mtDNA copy number)8,9. Furthermore, because mtDNA mutations 
normally arise over the course of human development, somatic cell 

division, aging and tumorigenesis, mtDNA genotypes are nonrandomly 
distributed across cells and consequently display potentially large 
cell-to-cell variation2,10,11.

The prevalence of intracellular and intercellular variability in 
mtDNA genotype represents both a critical confounder to the char-
acterization of phenotypes associated with mtDNA mutations and an 
effective cell-endogenous mutational barcode for tracing ongoing 
somatic evolution12. To date, several techniques such as single-cell 
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had a low correlation, suggesting minimal technical bias derived 
from sequencing depth in calculating mtDNA copy number (R = 0.03, 
P < 10−15; Extended Data Fig. 1a). Notably, DLP+ data were both broader 
and deeper compared to scRNA-seq data from the same sample in seven 
PDX (Kolmogorov–Smirnov test, all P < 2.2 × 10−16; Fig. 1d,e).

Unlike most other single-cell DNA sequencing technologies, DLP+ 
does not use pre-amplification, enabling relatively unbiased quantifi-
cation of both nuclear and mtDNA copy numbers at single-cell resolu-
tion. Following prior work2,22, we estimated mtDNA copy number by 
comparing the read depth of mtDNA- and nuDNA-aligned reads and 
calibrating mtDNA ploidy to the baseline ploidy of nuDNA. Lympho-
blastoid GM18507 cells typically contained 756 copies of mtDNA per cell  
(25th and 75th percentiles: 575 and 999, respectively) with highly robust 
and reproducible mtDNA copy number estimates across sequencing 
libraries (Extended Data Fig. 1b). In silico downsampling of one of  
the libraries deeply sequenced with a median mtDNA read depth  
of 79× per cell to a median mtDNA read depth of 8× per cell indi-
cated stable estimation of mtDNA copy number and heteroplasmic  
mtDNA variant calling down to 30% of the original sequencing  
depth (Extended Data Fig. 1c–g). The presence of ~1,000 copies  
of mtDNA per cell is consistent with lower-throughput digital  
droplet polymerase chain reaction estimates of single-cell mtDNA 
copy number23. Together with the reproducibility of such estimates 
across sequencing libraries, these analyses establish DLP+ as a 
robust high-throughput assay for single-cell mtDNA copy number 
quantification.

mtDNA copy number correlates with cell size
We analyzed DLP+ sequencing data of treatment-naive samples  
along with 3,203 GM18507 diploid lymphoblastoid cells, included 
in several DLP+ runs as controls for nuDNA copy number estima-
tion, for a total of 55,930 cells (Methods; Supplementary Table 1). 
Median copy number across these diverse cells varied from 531 in the  
TNBC PDX model SA1142 to 3,274 in the BRCA1−/−;TP53−/− 184-hTERT cell 
line sample SA1054 (Fig. 2a). Per-cell mtDNA copy number estimates 
were reproducible across technical replicates and exhibited a  
high degree of temporal stability across multiple 184-hTERT cell  
lines (Fig. 2b–d and Extended Data Fig. 2a). In contrast to population- 
level stability in mtDNA copy number, cell-to-cell variation in any  
single library was substantial (Fig. 2a). Most libraries exhibited a  
typical coefficient of variation of 0.65, consistent with observations  
in embryos and parathyroid24,25 and the per-sample variation  
observed in Pan-Cancer Analysis of Whole Genomes (PCAWG) bulk 
whole genomes of the corresponding cancer type2 (Extended Data 
Fig. 2b).

Next, we used mtDNA copy number quantification from DLP+ 
to interrogate cell-type-specific mtDNA copy number levels in both 
malignant and nonmalignant cells from the tumor microenvironment. 
Prior analysis of mtDNA copy number levels in tumors has focused 
on comparing estimates of mtDNA copy number from bulk tumor 
sequencing to matched adjacent-normal tissue1, potentially conflating 
changes in cellular composition with tumor-cell-intrinsic adaptations 
in mtDNA copy number. In four primary HGSC tumors with DLP+, we 
were able to identify both malignant and nonmalignant (corresponding 
to a mixture of stromal and immune) cells on the basis of nuDNA copy 
number profiles and found that malignant cells displayed a significantly 
higher mtDNA copy number (log2(fold change) = 1.3–3.0; all P < 10−14; 
Extended Data Fig. 2c). These data indicate that mtDNA copy number 
is elevated in tumor cells relative to colocalized nontumor cells in 
TNBC and HGSC. Further conclusions from this analysis, however, are 
limited by the inability to definitively distinguish nontransformed cells 
of a common cell-of-origin to HGSC from other nontransformed cells 
such as immune cells.

As mitochondria provide anabolic substrates for both cellular 
maintenance and proliferation26–29, we hypothesized that cell-to-cell 

RNA sequencing (scRNA-seq) and single-cell transposase-accessible 
chromatin sequencing (scATAC-seq) have been applied to measure 
mtDNA genotypes across tumors, focusing exclusively on the detection 
of somatic mutations (as opposed to mtDNA copy number) for use as 
cell-endogenous lineage markers13–16. These methods typically require 
DNA amplification or other approaches to library preparation that 
inhibit accurate quantification of the absolute mtDNA copy number in 
a single cell. Yet, the total number of wild-type mtDNA copies, which is 
determined jointly by heteroplasmy and the total mtDNA copy number, 
is a key property for understanding the genotype-phenotype map of 
pathogenic mtDNA mutations8,17,18. A comprehensive understanding of 
mtDNA genotypic variability, evolution and functional consequences 
therefore requires joint measurement of genotype and absolute copy 
number.

We previously developed a single-cell whole-genome sequencing 
(scWGS) platform called Direct Library Prep (DLP+) to study genome 
plasticity, cell-to-cell variation and clonal evolution driven by copy 
number alterations of the nuclear genomes of human cancers and 
model systems19–21. Because DLP+ is amplification-free and mtDNAs 
exist in multiple copies within each cell, it uniquely enables the simul-
taneous, high-fidelity interrogation of mtDNA genotype, mtDNA copy 
number and nuclear DNA (nuDNA) genotype across single cells. Here 
we analyzed DLP+ data of 72,275 single cells from engineered breast 
epithelial cell lines, patient-derived xenograft models of triple-negative 
breast cancer (TNBC) and high-grade serous ovarian cancer (HGSC) 
and primary HGSC tumors. Through the application of computa-
tional methods to this unique collection of single-cell genomes, we 
interrogated the regulatory architecture that quantitatively connects 
single-cell variation in mitochondrial and nuclear genotypes to down-
stream phenotypes.

Results
Per-cell mtDNA copy number quantification by DLP+
To study mtDNA copy number and heteroplasmy jointly at single-cell 
resolution, we collected scWGS (DLP+) libraries from a variety of distinct 
biological settings covering nontransformed cell lines, patient-derived 
xenografts (PDXs) and primary human tumors (Fig. 1a,b and Sup-
plementary Table 1). These data included previously published19–21 
sequencing of cell lines from (1) GM18507 diploid lymphoblastoid 
cell line (n = 3,203 cells), (2) nontransformed 184-hTERT mammary 
epithelial cell line (n = 4,011 cells), (3) four TP53−/− 184-hTERT cell lines 
(n = 30,012 cells), (4) engineered TP53−/−;BRCA2+/− 184-hTERT cell line 
(n = 2,012 cells), (5) two TP53−/−;BRCA2−/− 184-hTERT cell lines (n = 1,056 
cells), (6) TP53−/−;BRCA1+/− 184-hTERT cell line (n = 463 cells) and (7) 
TP53−/−;BRCA1−/− 184-hTERT cell line (n = 430 cells), as well as the ovar-
ian cancer cell line OV2295 (n = 573 cells), cervical cancer cell line HeLa 
(n = 507 cells) and HER2+ breast cancer cell line T-47D (n = 2,534 cells). 
Furthermore, our dataset included 12 different PDX models of TNBC 
(n = 23,466 cells), three of which were cisplatin-treated (n = 7,300 cells), 
one HGSC PDX (n = 38 cells) and five primary HGSC tumors (n = 4,150 
cells) including two newly sequenced surgical resections for a total of 32 
distinct samples. For 18 of these samples (eight cell line samples, seven 
PDX samples and three primary tumor samples), matching scRNA-seq 
from the same sample was available. Many samples include multiple 
sequencing libraries performed at different time points as part of a 
serial passaging experiment, resulting in 127 distinct libraries (median 
507 cells per library).

We first compared the coverage of mtDNA in DLP+ and matching 
3′-enriched 10× scRNA-seq. Reads aligning to mtDNA were abundant 
across all cells and, in contrast to the scRNA-seq, covered the entire 
mitochondrial genome (Fig. 1c). In total, 93.96% of the mitochon-
drial genome had higher coverage in DLP+ compared to scRNA-seq,  
enabling comparatively robust mtDNA variant calling and mtDNA copy 
number estimation directly from primary DLP+ sequencing data. Read 
depth per cell and the relative capture efficiency of mtDNA/nuDNA 
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variation in mtDNA copy number within clonally related cells may 
reflect bona fide variation in the energetic and anabolic demands of 
single cells30,31. Such changes in anabolic demand might, for example, 
result from normal variation in cell size, which has been previously 
posited in the literature and recently quantified in budding yeast24,25,32. 
We analyzed coregistered bright field images from the DLP+ plat-
form (n = 4,011 184-hTERT breast epithelial cells, n = 26,024 of eight 

184-hTERT-derived cell lines and n = 1,731 GM18507 diploid lympho-
blastoid cells) and correlated estimates of cell size from these images 
with single-cell mtDNA copy number. The diameter of diploid cells 
ranged from 10.43 µm to 50.38 µm and varied significantly according to 
lineage (Extended Data Fig. 2d). This corresponded to an approximate 
24 and 29.2 mtDNA copy number increase per micron, respectively 
(Extended Data Fig. 2e). In total, 46/52 sequencing libraries (covering 
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Fig. 1 | Overview of the data and coverage information. a, Summary of the data 
with histogram indicating the number of cells per DLP+ library corresponding 
to the samples, annotated by the data type and tissue type. b, Schematic 
representation of DLP+ showing the ability to capture both mtDNA sequence 
for heteroplasmic variant analysis and absolute mtDNA copy number, along 
with phylogenetic analysis based on the nuclear genome copy number profile. 
c, Circos plot of the median read coverage across all the samples on a linear 
scale with the upper and lower bands representing the first and third quartiles. 

Coverage for DLP+ is in blue, and coverage for scRNA-seq is in orange. The outer 
track indicates the regions where the coverage breadth is higher in 3′-end scRNA-
seq than in DLP+. The mtDNA genes are annotated and colored by mitochondrial 
complexes. d, Lorenz curve with cumulative proportion of total genome 
coverage on the y-axis and the cumulative proportion of bases on the x-axis. Each 
curve for DLP+ and 10× scRNA-seq was plotted using the seven PDX genomes.  
e, Depth-of-coverage curves for DLP+ and 10× scRNA-seq for the same seven  
PDX genomes.
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11 distinct cell lines) demonstrated a statistically significant positive 
correlation between cell size and mtDNA copy number (Pearson cor-
relation, Q < 0.05; Fig. 2e,g), corroborating previous studies in bud-
ding yeast27,32,33. We then studied tumor cells, analyzing 5,476 images 
of cells across 40 libraries of six TNBC PDX models and 4,005 images 
across nine libraries of five primary HGSC samples. In total, 20/24 
sequencing libraries showed a significant positive correlation between 
cell diameter and mtDNA copy number (Fig. 2f,h). We also correlated 
the mtDNA-to-nuDNA ratio (MNR), that is, the number of copies of 
mtDNA per average haploid nuclear genome, against cell diameter, 
and found statistically significant results across conditions (Extended 

Data Fig. 2f,g). These findings confirm that, in both cultured cells and 
human tumors, cell-to-cell variation in mtDNA copy number is associ-
ated with a biophysical adaptation in cell size.

Stoichiometric adaptation of mtDNA copy number to 
whole-genome doubling (WGD)
We hypothesized that somatic alterations in the nuclear genome, 
and especially large-scale changes to total copy number might con-
tribute to the extensive variation in mtDNA copy number observed 
in Fig. 2a. In particular, we anticipated that WGD events, which have 
previously been associated with large metabolic changes and increase 
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in cell sizes and are common in TNBC and HGSC, may be major con-
tributors to mtDNA copy number variation in any given sample34,35. 
WGD was a readily identifiable and frequent event in DLP+ data—we 
observed WGD in an average of 13% of all sequenced cells from cell 
lines, 4.7% of all cells from sequenced PDXs and 18% of all cells from 

sequenced primary tumors (Extended Data Fig. 3a). Interestingly, 
there was only a small difference in the number of mtDNA variants 
in diploid and tetraploid cells (Supplementary Table 4). On the other 
hand, tetraploid cells had significantly higher mtDNA copy numbers 
than diploid cells across all cell lines, PDX models and primary tumor 
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sided, two-sample Wilcoxon test indicates that diploid cells have a significantly 
different mtDNA copy number compared to tetraploid cells (P < 10−16). Boxplots 
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correspond to 1.5 times the interquartile range. **** denotes P ≤ 0.0001. b, Left, 
violin plots of per-cell MNR between diploid and tetraploid cells of all the cell 
lines derived from 184-hTERT breast epithelial cells (n = 10 samples). Filled 
and half-filled boxes indicate homozygous and heterozygous loss-of-function 
genotypes, respectively. Right, boxplot showing the distribution of percent 
change in MNR from diploid to tetraploid cells. All boxplots represent the 
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1.5 times the interquartile range. Bottom, the haplotype-specific states. c, Same 
as b but for PDX models and primary tumor samples (n = 8 samples). d, nuDNA 

copy number profile of TP53−/− 184-hTERT cell line SA906a for diploid and 
tetraploid cells of clones A, C, D and G (n = 3,219 cells). Colors correspond to 
copy number states. A phylogenetic tree with major mutational events in both 
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and **** denotes P ≤ 0.0001. f, Same as d but for clones A, B and C in a primary 
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clone C (two-sided Wilcoxon test). NS, not significant; FC, fold change.
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samples (two-sample Wilcoxon test, all P < 10−15; Fig. 3a and Extended 
Data Fig. 3b).

Because coordinated transcription between the nuclear and mito-
chondrial genomes is necessary for proper stoichiometric assembly 
of respiratory complexes36–38, we tested whether the mtDNA copy 
number would increase in direct proportion to the ploidy of the nuclear 
genome39 (Methods). To do so, we investigated how MNR varies in 
tetraploid versus diploid populations of related subclones in a com-
mon sequencing library. In parental 184-hTERT cells, the MNR differ-
ence between diploid and tetraploid cells was negligible (log2(fold 
change) = 7.5 × 10−3, P = 0.067; Extended Data Fig. 3c). Similar marginal 
differences in MNR were observed between tetraploid versus diploid 
cells in most 184-hTERT-derived lines, with the exception of BRCA1-null 
184-hTERT cells that exhibited 31% (SA1292) and 15% (SA1054) increases 
in MNR in tetraploid cells relative to diploid cells (one-sided Wilcoxon 
test, P = 9.3 × 10−4 and P = 2.4 × 10−7, respectively; Fig. 3b). We observed 
a similar tendency for preservation or small increases in MNR in tetra-
ploid cells relative to diploid cells in the majority of eight PDX and pri-
mary tumor samples with sufficient tetraploid/diploid cells for analysis 
(percent change −6.3% to 12.6%; 2/8 samples statistically significant: 
one-sided Wilcoxon test, both P < 0.025; Fig. 3c). These data estab-
lish that for the majority of samples, tetraploid cells and diploid cells 
derived from a common progenitor contain roughly equal numbers of 
mtDNA copies per haploid genome. This dosage homeostasis between 
mtDNA and nuDNA is remarkable especially because mtDNA replica-
tion has generally been thought to be uncoupled from the nuDNA 
replication40,41, however, recent studies suggest additional preferential 
mtDNA replication during S phase42,43. Through fluorescence-activated 
cell sorting (FACS)-based isolation of cells from T-47D breast cancer and 
GM18507 lymphoblastoid cell lines, we investigated the relationship 
between absolute mtDNA copy number and nuDNA ploidy across cell 
cycle phases and found that the mtDNA copy number was preferen-
tially replicated in the S phase. This resulted in a higher mtDNA copy 
number, but not MNR, in the G2 and S phases compared to the G1 phase 
(Extended Data Fig. 3d,e). Additionally, while the mtDNA copy number 
was approximately doubled in the presence of a WGD, the increase in 
cell diameter was not as pronounced, indicating that MNR homeosta-
sis is not completely explained by adaptations in cell size (Extended 
Data Fig. 3f,g). Together, these results suggest that a combination of 
passive and active mechanisms homeostatically coordinate absolute 
mtDNA copy number and nuDNA ploidy. We subsequently focused 
on investigating the factors driving exceptions to this phenomenon.

To better understand why some samples exhibited large increases 
in MNR in tetraploid cells relative to diploid cells, we investigated in 
detail the TP53−/− 184-hTERT sample SA906a and the primary HGSC 
tumor SPECTRUM-OV-081, both of which demonstrated large, statis-
tically significant differences in tetraploid versus diploid MNR (9.35% 
and 12.6%, respectively; one-sided Wilcoxon test, both P < 1.2 × 10−4). We 
hypothesized that, in these samples, high levels of clonal diversification 
produced clones with distinct MNR that could indirectly produce an 
apparent difference between MNR in diploid and tetraploid cells. To 
test this hypothesis, we ran HDBSCAN44 to detect clusters of cells with 
similar nuDNA copy number profiles and assigned each cell to a specific 
clone. Somatic mtDNA variants determined to be informative based on 
a Bayesian clonal assignment model were present in both diploid and 
tetraploid cells of the same clones, confirming the presence of both 
diploid and tetraploid cells within a clone (Methods; Extended Data 
Fig. 3h–k). Consistent with our hypothesis, we observed substantial 
differences in the MNR of clone A in SA906a, which is primarily dis-
tinguished by the presence of a MYC focal amplification, compared to 
ancestral clone D (log2(fold change) = 0.5, Wilcoxon test, P < 2.2 × 10−16). 
Notably, diploid and tetraploid cells in the same clone demonstrated 
indistinguishable MNRs, whereas the differences in MNR between 
ploidy-matched diploid cells across clones A and D were large and 
statistically significant (log2(MNR) of 0.5, P < 10−15; Fig. 3d,e). A similar 

effect was observed in the primary tumor sample SPECTRUM-OV-081, 
where the clonal differences in MNR (for example, in exceptionally 
high MNR in clone C) dominated intraclone differences in diploid and 
tetraploid cells (Fig. 3f,g). These data indicate that clonal diversification 
can drive apparent differences in MNR between diploid and tetraploid 
cells, and when clonal identity is controlled, diploid and tetraploid cells 
demonstrate equivalent MNR levels.

High MNR increases interferon (IFN) response and depletes 
hypoxic gene expression
We next asked if clone-specific differences in MNR elicited phenotypic 
consequences. We computationally assigned cells in scRNA-seq to 
clones identified from matched DLP+ using TreeAlign45 across sam-
ples with both DLP+ and matching scRNA-seq data (Methods). We then 
compared mtDNA-encoded gene expression patterns of clones with the 
highest MNR to those with the lowest MNR. For instance, HGSC primary 
tumor SPECTRUM-OV-022 contained eight clones that closely clustered 
clones (A, C, D, E, G, I, J and K; Fig. 4a,b). Clone A, which had a high MNR, 
had higher expression of mtDNA-encoded MT-CO2 compared to clone 
I, which had the lowest MNR (Fig. 4c). A similar pattern was observed in 
SPECTRUM-OV-081, which showed three clones in the UMAP—clones A, 
B and C (Fig. 4d,e). Clone C (highest MNR) had higher MT-ND3 expression 
compared to clone B (lowest MNR; Fig. 4f). We then expanded this analy-
sis across all tumors, comparing tumor subclones for cases with large 
clonal differences in MNR (log2(MNR) > 0.15). For each of the three tumor 
samples with sufficiently large differences in MNR across clones, we 
compared the transcriptional profiles of cells in clones with the maximal 
and minimal MNR (including one PDX and two primary HGSC tumors), 
observing that transcription of mtDNA-encoded genes was significantly 
higher in MNR-high clones compared to MNR-low clones (Extended Data 
Fig. 4a). Similarly, we observed enrichment in mtDNA-encoded gene 
expression for MNR-high clones for cell lines (Extended Data Fig. 4b). 
While an association between MNR and mtDNA expression has been 
suggested in earlier work30,46, these data directly connects subclonal 
variation in MNR to mtDNA-encoded gene expression.

To more granularly understand the association between MNR 
and non-mtDNA-encoded gene expression, we undertook a pathway 
enrichment analysis. Pathway analysis on the three tumor samples with 
matched DLP+ and scRNA-seq using differential expression between 
high and low MNR clones identified 8/51 Molecular Signatures Database 
(MSigDB) hallmark gene sets with recurrent enrichment/depletion, 
including elevated expression of mtDNA oxidative phosphorylation 
(OXPHOS) pathway and innate immune-related pathways (Fig. 4g). 
Interestingly, only SPECTRUM-OV-022 exhibited statistically signifi-
cant enrichment in nuDNA-encoded OXPHOS in the same direction 
as mtDNA-encoded OXPHOS, ruling out MNR as a dominant regulator 
of nuDNA-encoded OXPHOS transcription. Instead, high MNR clones 
exhibited a recurrent depletion in hypoxic gene expression—in both 
SPECTRUM-OV-022 and SPECTRUM-OV-081, high MNR clones (OV-022 
clone A; OV-081 clone C) had significantly lower PROGENy hypoxia 
enrichment score than low MNR clones (SPECTRUM-OV-022 clone I; 
SPECTRUM-OV-081 clone B; Wilcoxon test; OV-022, P = 0.0064, OV-081, 
P = 7.9 × 10−6; Fig. 4h,i). Variation in MNR in vivo is thus primarily associ-
ated with changes to mtDNA-encoded, but not nuclear-DNA-encoded, 
OXPHOS expression, as well as transcriptional adaptations to 
nuDNA-encoded metabolic pathways.

Dosage-dependent mtDNA variant effects on mtDNA copy 
number
Recently, a genome-wide association study (GWAS) of variation in 
mtDNA copy number in whole blood reported that certain germline 
mtDNA insertions, including those affecting the length of a homopoly-
meric block at m.302 associated with the balance of mtDNA replication 
and transcription, could potentially regulate mtDNA copy number47–49. 
Interestingly, this study revealed (using scATAC-seq) that individual 
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Fig. 4 | Mapping clones between DLP+ and scRNA-seq reveals that high MNR 
leads to enrichment in IFN signaling and depletion in the hypoxia pathway. 
a, UMAP of scRNA-seq data from SPECTRUM-OV-022, colored by clones inferred 
from TreeAlign, n = 2,954 cells. Shaded areas demarcate clones A and I, with each 
encompassing cells of the same clone. b, Violin plot of per-cell MNR distribution 
across eight clones (n = 958 cells). Arrows refer to clones A and I having the 
highest and the lowest median MNR values. All boxplots represent the median, 
25th percentile and 75th percentile, and whiskers correspond to 1.5 times the 
interquartile range. c, UMAP plot, colored by expression level of MT-CO2, which 
indicates clone A having the highest expression. Shaded areas demarcate clones 
A and I, with each encompassing cells from the same clone. d, Same as a but for 
SPECTRUM-OV-081, n = 2,666 cells. Shaded areas demarcate clones B and C, 
with each encompassing cells of the same clone. e, Violin plot of per-cell MNR 
distribution across three clones (n = 700 cells). Arrows refer to clones C and B 
having the highest and the lowest median MNR values. All boxplots represent 

the median, 25th percentile and 75th percentile, and whiskers correspond to 
1.5 times the interquartile range. f, UMAP plot, colored by expression level of 
MT-ND3, which indicates clone C having the highest expression. Shaded areas 
demarcate clones B and C, with each encompassing cells from the same clone. 
g, Differential expression of MSigDB hallmark gene sets for tumor samples, 
between clones with the highest and the lowest MNR. Differential expression is 
quantified by directional −log10(Q): here >0 denotes upregulation in clones with 
high MNR; <0 denotes downregulation. EMT, epithelial-mesenchymal transition. 
h, UMAP plot colored by PROGENy score for hypoxia pathway, which indicates a 
depletion in clone A. Shaded areas demarcate the two clones—A and I, with each 
encompassing cells from the same clone. i, UMAP plot colored by PROGENy 
score for hypoxia pathway, which indicates a depletion in clone C. Shaded areas 
demarcate the two clones—B and C, with each encompassing cells from the same 
clone. TNF, tumor necrosis factor; NF-κB, nuclear factor kappa B.
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cells from the same patient often exhibited different heteroplasmic 
levels of such insertions, suggesting that cell-to-cell variation in mtDNA 
genotype could, in cis, drive variation in mtDNA copy number levels. 
Because of the unique ability of DLP+ to simultaneously track mtDNA 
copy number and genotype in phenotypically distinct tumor cells, we 
evaluated if DLP+ could identify the length heteroplasmy at m.302 and, 
if so, test the hypothesis that the length heteroplasmy is associated 
with changes in single-cell mtDNA copy number. For each of the 32 
samples in our dataset, we genotyped the mtDNA of individual cells 
(Methods) and identified cells with homopolymeric insertions at m.302. 
We identified a single sample (SA1047) with a sufficient number of cells 
for subsequent analysis (at least 20 diploid cells with minimum cover-
age of 10 reads at position 302; Fig. 5a). Considering diploid cells only 
to avoid any confounding effects associated with nuDNA, we quanti-
fied both mtDNA copy number and the heteroplasmy of the reference 
allele (m.302A) and evaluated the association between the two. This 
analysis revealed that, consistent with the bulk GWAS data, cells with 
the reference allele (m.302A) demonstrated elevated mtDNA copy 
number (Wilcoxon test, P = 0.025; Fig. 5b), and m.302A heteroplasmy 
was associated with higher mtDNA copy number (Pearson correlation, 
R = 0.17 and P = 0.018; Fig. 5c), indicating that mtDNA genotype itself 
may modulate mtDNA copy number levels.

We next analyzed truncating mutations in mtDNA, which arise 
in approximately 20% of all cancers and are thought to impair mito-
chondrial respiration2,7,50. Prior studies have suggested that somatic 
truncating mtDNA mutations can also elicit increases in mtDNA copy 
number51–53. However, because prior analyses were undertaken from 
bulk sequencing data, there remains little understanding of the adap-
tive response of mtDNA copy number to single-cell variation in het-
eroplasmy. Analysis of mtDNA copy number and truncating mtDNA 
mutations in 11,691 total cells across seven distinct cell lines, five PDX 
samples and five primary tumor samples identified 23 truncating muta-
tion events spanning across 19 distinct genomic positions and 20 silent 
mutations spanning across 20 distinct genomic positions (truncating 
variants shown in Fig. 5d). Consistent with prior reports7,54, these muta-
tions predominantly affected complex I subunits at homopolymeric 
hotspots (for example, m.12417).

Among the 23 truncating variants across both cell lines and 
tumors, we identified a statistically significant association between 
the heteroplasmy of m.6708G>A (encoding a complex IV truncating 
mutation) and mtDNA copy number (Q = 2.1 × 10−2; Fig. 5e). The patho-
genicity and clinical significance of this variant have been reported 
previously in mitochondrial myopathy and rhabdomyolysis55, confirm-
ing our prediction that somatic truncating mutations in mtDNA can 
have deleterious effects on the cellular fitness in the form of increased 
mtDNA copy number. We corroborated the presence of m.6708G>A in 

matched scRNA-seq data (Fig. 5f,g) and, consistent with the positive 
correlation between heteroplasmy and mtDNA copy number observed 
in DLP+ (Fig. 5h), the heteroplasmy of m.6708G>A in scRNA-seq data 
was positively associated with the expression of mtDNA-encoded 
genes (Pearson correlation against mtDNA copy number, P < 2.2 × 10−16; 
against MT-ND3 expression, P < 0.001; Fig. 5i–k). In contrast, we found 
no statistically significant association between heteroplasmy and 
mtDNA copy number levels among 20 silent mutations. Finally, we also 
evaluated the association between the heteroplasmy of 130 nontrun-
cating mitochondrial variants, the vast majority of which were variants 
of unknown significance, and mtDNA copy number. This identified two 
variants (m.822G>A, affecting a nearly universally conserved locus 
of MT-RNR1, and m.10197G>A, a confirmed-pathogenic allele caus-
ing Leigh disease56,57) whose heteroplasmy significantly associated 
with elevated mtDNA copy number, implicating these mutations as 
putative modifiers of resting mtDNA copy number. A fourth variant 
of unknown significance (m.1150G>A, also affecting MT-RNR1 and 
universally conserved in the human germline) was observed in two 
TP53−/− 184-hTERT cell lines and associated with decreased mtDNA copy 
number. These data establish that single cells adapt to some pathogenic 
mtDNA mutations, but not silent mutations, by increasing mtDNA copy 
number in a heteroplasmy/dosage-dependent manner.

Discussion
Although the few proteins encoded by mtDNA are essential to normal 
cellular metabolism and physiology, both mtDNA copy number and 
genotype can vary dramatically across otherwise isogenic populations 
of cells. Neither the regulatory principles controlling this cell-to-cell 
variation nor the phenotypes arising from variation to mtDNA copy 
number in individual cells are well-understood. By applying DLP+ to 
simultaneously characterize mtDNA copy number, mtDNA genotype 
and nuDNA genotype in >72,000 cells, we were able to carry out scaled 
analyses of the biophysical, evolutionary and phenotypic consequences 
of cell-to-cell variation in mtDNA copy number.

We observed extensive variation in per-cell mtDNA copy number, 
which is consistent with previous observations24,25. By character-
izing the quantitative variation in per-cell mtDNA copy number in  
human cancer in relation to cell size, nuclear ploidy, clonal compo-
sition and expression of mtDNA-encoded OXPHOS genes, we have 
shown that mtDNA copy number variation reflects, at least in part, 
both anabolic cellular demands for increased levels of cellular build-
ing blocks to produce larger cells58 and stoichiometric equipoise to 
ensure appropriate relative levels of mtDNA and nuDNA36 (that is, the 
MNR). Remarkably, the emergence of genetically distinct subclones 
can perturb MNR levels, and such variation in MNR appears to have 
specific transcriptional consequences on mtDNA-derived, but not 

Fig. 5 | Genetic perturbation in mtDNA can elicit a dosage-dependent 
decrease in mtDNA copy number. a, Length heteroplasmy composition of 
m.302 across 126 single cells in HGSC primary tumor sample, SA1047. Each bar 
represents a cell. b, Effect of length heteroplasmy composition, the reference 
(n = 148 cells) and the major allele (n = 14 cells), at m.302 on mtDNA copy number. 
Reported P value from two-sided, two-sample Wilcoxon signed rank test.  
c, Scatter plot showing heteroplasmy of the reference allele at m.302 and mtDNA 
copy number (two-sided Pearson correlation, R = 0.17, P < 0.02). Gray-shaded 
areas represent error bands indicating the 95% confidence interval, and the 
blue line indicates the regression line. d, Circos plot with lollipop indicating 
the genomic position of truncating variants identified in DLP+ across both 
cell lines and PDX models (CI, CIII, CIV, CV, control region, rRNA, tRNA, OLR). 
e, Concordance between the heteroplasmy level of the truncating, silent and 
nontruncating variants and the mtDNA copy number across all cell lines and 
tumors. f, Integrative Genomics Viewer59 of m.6708G>A substitution in DLP+ 
sequencing data of SPECTRUM-OV-081 Infracolic Omentum sample. The 
stacked histogram on top reflects the distribution of the reads supporting the 
reference and the alternate alleles. g, Same as f but for scRNA-seq of the same 

sample at the matched site. h, Two-sided Pearson correlation between mtDNA 
copy number and heteroplasmy level of the m.6708 truncating variant in 
SPECTRUM-OV-081 in DLP+ (R = 0.51, P = 2.9 × 10−48). Gray-shaded areas represent 
error bands indicating the 95% confidence interval, and the blue line indicates 
the regression line. i, Two-sided Pearson correlation between MT-ND3 gene 
expression and heteroplasmy level of the same m.6708G>A truncating variant in 
SPECTRUM-OV-081 in matched scRNA-seq (R = 0.45, P = 0.00054). Gray-shaded 
areas represent error bands indicating the 95% confidence interval, and the blue 
line indicates the regression line. j, Pearson correlation coefficient between 
the heteroplasmy level of the truncating variant m.6708 and expression of all 
the genes in the SPECTRUM-OV-081 sample. The mtDNA-encoded genes are 
colored in red. k, Enrichment of MSigDB hallmarks gene sets for tumors using the 
rank-sorted gene list based on correlation coefficient, quantified by directional 
−log10(Q): here >0 denotes upregulation in cells with high heteroplasmy 
truncating variants and <0 denotes downregulation. CI, mitochondrial 
complex I; CIII, mitochondrial complex III; CIV, mitochondrial complex IV; CV, 
mitochondrial complex V; rRNA: ribosomal RNA; tRNA, transfer RNA; OLR, light 
strand origin of replication.
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nuDNA-derived, OXPHOS transcription. This represents a previously 
poorly considered class of phenotypic variation that arises from 
clonal evolution in cancer with potential implications for improved 
understanding of cellular fitness.

We also find, in agreement with the population-scale analysis 
of healthy individuals and patients with cancer, that certain mtDNA 
genotypes were themselves associated with changes to copy number47. 
Unlike bulk sequencing studies, we harnessed DLP+ to quantitatively 
interrogate how mutant dosage, or mtDNA heteroplasmy, in individual 
cells affected mtDNA copy number. We observed that both relatively 
common germline polymorphisms (at m.302) and highly pathogenic 

somatic mutations elicited adaptive increases in mtDNA copy number 
in a heteroplasmy-dependent manner. Given that disruption of dif-
ferent functional components of mtDNA (such as complex I versus 
complex IV subunits or tRNA genes versus protein-coding genes) is 
known to produce vastly different phenotypes and sensitively depend 
on cell-of-origin, investigation of the adaptive mtDNA copy number 
response to functionally distinct mtDNA mutations in diverse cellular 
backgrounds may prove insightful. In summary, our work here impli-
cates the coevolution of the mitochondrial and nuclear genomes in 
individual cells as a regulator of cellular fitness and phenotypic states 
in cancer.
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Methods
Experimental model and participant details
Cell culture and PDXs. Cell lines were generated as previously 
described19,21. In brief, the samples included (1) an immortalized nor-
mal human female breast epithelial cell line 184-hTERT L9, (2) four 
sets of 184-hTERT cell lines with perturbations in TP53−/− passaged 
over multiple time points, (3) five 184-hTERT cell lines with a variety of 
genetic perturbations in the repair pathway, including TP53−/−, BRCA1−/−, 
BRCA2+/− and BRCA2−/− and (4) a GM18507 lymphoblastoid cell line. 
The samples also included three sets of TNBC PDX models. The Uni-
versity of British Columbia’s Ethics Committees granted approval for 
all experiments involving human resources. Donors from Vancouver, 
British Columbia, provided their consent for the Tumor Tissue Reposi-
tory protocols (TTR-H06-00289, H16-01625). These samples were 
then transplanted into mice following the Animal Resource Center 
bioethics protocol (A19-0298-A001), which received approval from 
both the University of British Columbia’s Animal Care Committee and 
the BC Cancer Research Ethics Board under protocols H20-00170 and 
H18-01113. The serial passaging was done by seeding approximately  
1 million cells each time and profiled with DLP+ at 4–11 different passage 
points with a mean of 6,070 cells at each time point.

SPECTRUM. All patients from the MSK SPECTRUM cohort60–62 provided 
their consent to the institutional biospecimen banking protocol. The 
Memorial Sloan Kettering Cancer Center’s Institutional Review Board 
(IRB) approved all related protocols (15-200 and 06-107). The consent 
process adhered to the IRB’s standard operating procedures for obtain-
ing informed consent, ensuring that all participants were fully informed 
and agreed in writing before any study-specific activities commenced. 
This study was carried out in accordance with the principles of the 
Declaration of Helsinki and adhered to the Good Clinical Practice 
guidelines. Matched 10x Genomics 3′-end scRNA-seq and DLP+ were 
obtained from two patients with HGSC (OV-022 and OV-081). Single-cell 
suspensions were flow-sorted on CD45 to separate the immune com-
ponent, and the CD45-negative fractions were then profiled with DLP+.

Quantification and statistical analysis
Mitochondrial variant calling and genotyping. Quality score is 
assigned to each cell as part of the DLP+ pipeline based on 18 features 
related to read depth and nuDNA CNV information, as described in ref. 21.  
Only live cells with a quality score of at least 0.75 were kept for further 
analysis. We developed a single-cell variant calling workflow to identify 
mtDNA variants in single cells based on our previously described variant 
calling pipeline7. Variants are called by two independent variant-calling 
pipelines, and only the variants identified by both pipelines were 
retained for further analysis. The first pipeline is Mutect2 (GATK 
v4.1.2.0) using the mitochondrial option, which was run on every cell and 
then merged into a single VCF file. The second pipeline is samtools mpi-
leup (v1.9) to generate a pileup file using variant-supporting reads with 
a minimum mapping quality (>20) and base quality (>20). This was run 
on the merged pseudo-bulk of all the single cells for the variant calling 
step. Variants were required to contain at least two variant-supporting 
reads in both the forward and reverse directions. PCR duplicates and 
reads that failed any of the quality checks were removed. As described 
in ref. 14, capturing the agreement of heteroplasmy between the strands 
is important in eliminating false positive calls. Thus, variants were 
further filtered based on a high Pearson correlation (R ≥ 0.2). Next, the 
black-listed, homopolymer repeat regions (513–525 and 3105–3109) 
in the mtDNA genome were filtered out as well22. The filtered variants 
were genotyped by running the second pipeline on individual cells for 
a per-cell heteroplasmy calculation. Mutational signature and strand 
bias were assessed as described in ref. 22,63. The trinucleotide sequence 
context (immediate 5′ and 3′) was extracted, and the substitution rate for 
each context was calculated with the number of substitutions normal-
ized by the frequency of all the observed contexts, in the L and H strand, 

respectively. We defined the germline variants as variants that enable us 
to infer the ancestral haplogroup for each cell line. Homoplasmic vari-
ants then refer to variants that are not found in the haplogroup of the 
sample (local private mutations) or in any of the defined haplogroups 
(global private mutations).

Estimation of average nuclear ploidy and baseline ploidy. Both the 
average ploidy and the baseline ploidy level of each cell were estimated 
with HMMcopy64, as previously described in ref. 21. Briefly, for each 
cell, we calculate the average ploidy as the mean copy number across 
the 500 kilobase-wide bins in the entire nuclear genome, which is a 
nonnegative real number. On the other hand, the baseline ploidy of 
cells is categorized as either diploid, triploid, tetraploid or some other 
integer value based on the most commonly occurring copy number 
state across the 500 kilobase-wide bins of the entire nuclear genome.

Estimation of mtDNA gross copy number. The mtDNA copy number 
was calculated for each cell as follows:

mtDNA copy number = mtDNA readdepth
nuDNA readdepth

× averageploidy

The MNR refers to the ratio of mtDNA read depth to nuDNA read 
depth. Average ploidy was calculated using the mean copy number of 
all bins across the nuDNA genome from the HMMcopy64 result.

Determining the cell diameter from microscopic images. DLP+ 
platform has microscopic image data at the nozzle before the cells are 
isolated into wells21. Microscopic images taken during the dispensing 
of the cells are used to automatically filter for doublets, and additional 
manual inspection of tetraploid cell images found that the median 
number of doublets across 25 sequencing libraries was 3.76%, suggest-
ing that WGD predictions are unlikely to be confounded by doublets 
(Extended Data Fig. 2h,i and Supplementary Table 3). The diameter 
was calculated as Waddel disk diameter21.

A linear regression model for inference of cell size. First, a lin-
ear regression model was built to predict mtDNA copy number from 
the average nuDNA ploidy. Then the model was expanded to a lin-
ear multiple regression model to predict mtDNA copy number from 
cell diameter and the average ploidy. The average ploidy level could 
deviate from the integer baseline ploidy level in the presence of large 
chromosomal arm level copy number changes. Benjamini–Hochberg 
correction was applied for each sequencing library to account for the 
multiple testing of cells. For plotting, the scale was standardized and 
normalized to the mean.

Comparison of mtDNA copy number across cell cycle phases. Cell 
cycle analysis was performed on T-47D and GM18507 cell lines gener-
ated through the combination of experimental FACS21 and PERT62 out-
put. FACS cell cycle phase labels were derived by staining cells for their 
total DNA content using DAPI and then isolating cells into G1-, S- and 
G2-phase populations before sequencing. PERT was then run on this 
scWGS data at 500 kb resolution using default model parameters and 
the FACS labels as initializations for the G1/2- and S-phase populations. 
PERT calls cells with 5–95% replicated loci as S phase and all others as 
G1/2 phase. The fraction of replicated loci per cell is also used to scale 
the total copy number of these cells. Only cells with matching FACS and 
PERT phase labels were included in the downstream analysis.

Relative change in MNR between diploid and tetraploid cells. The 
change in the MNR was calculated for each group as follows:

Difference = Median(MNRt) −Median(MNRd)
Median(MNRd)

× 100
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Inference of clones based on nuDNA read counts. Clonal assignment 
of the cells was done by running HDBSCAN on the two-dimensional 
embedding from UMAP of the per-cell GC-corrected read count pro-
files20. Parameters used in UMAP and HDBSCAN were the same as 
previously described—UMAP was run with min_dist = 0.0 and metric = 
‘correlation’, whereas HDBSCAN was run with approx_min_span_tree 
= False, cluster_selection_epsilon = 0.2 and gen_min_span_tree = True.

Model description and clonal inference using mtDNA variants. Mity-
Bayes is a Bayesian statistical model that systematically assigns cells into 
clones based on both the presence of mtDNA mutations and their het-
eroplasmy levels. The inputs to MityBayes are a prior on the number of 
clones, alternate read counts and the total read counts for each mtDNA 
variant across the cells. The alternate read counts of a variant in a cell 
follow a binomial distribution. The total read count at a specific genomic 
position where a variant is present is equivalent to the number of trials 
(n) and the clone-specific heteroplasmy level serves as the probability 
of success (p). Inference is performed using stochastic variational infer-
ence in the Pyro package. We generate the variational distributions using 
the AutoDelta function that uses Delta distributions to construct a MAP 
guide over the latent space. Optimization is performed using the Adam 
optimizer. By default, we set a learning rate of 0.1, and the convergence 
is determined when the relative change in evidence lower bound (ELBO) 
is lower than 10−5. We benchmarked MityBayes against the most similar 
method available in the literature, MQuad65, which does not assign cells 
to clones based on mtDNA as MityBayes does but rather prioritizes 
mtDNA mutations that discriminate among different clones. MityBayes 
weighed the true variants with a higher probability of contribution in 
the clone assignment and was able to detect the clones when the input 
variants list was filtered (Extended Data Fig. 3l,m).

Integration of scDNA and scRNA data with TreeAlign. TreeAlign 
was used to computationally integrate scDNA and scRNA data by 
assigning transcriptional profiles to scDNA-based subclones. Briefly, 
TreeAlign explicitly models clone-specific copy number dosage 
effects and defines subclones informed by transcriptional changes 
from scDNA-based single-cell phylogenies. Here we ran TreeAlign 
with the following parameters: infer_b_allele = False, repeat = 8, min_
clone_assign_prob = 0.9, min_clone_assign_freq = 0.75, min_consen-
sus_gene_freq = 0.55, max_iter = 900, rel_tol = 1e-5, initialize_seed = 
True, min_cell_count_expr = 40, min_cell_count_cnv = 30, min_gene_diff 
= 150, min_snp_diff = 60, level_cutoff = 50, min_proceed_freq = 0.80, 
min_record_freq = 0.75.

Pathway enrichment analysis in matched scRNA-seq. CellRanger 
software (version 4.0.0) was used to perform read alignment, bar-
code filtering and UMI quantification using the 10× GRCh38 tran-
scriptome (version 3.0.0) for gene expression. Filtered matrices were 
processed using the Seurat R package (version 3.0.1)66,67. The resulting 
gene-by-cell matrix was log normalized and merged by the patient. 
Cell-type assignments were computed on each patient with cellas-
sign (version 0.99.2)68 using a set of curated marker genes, and cancer 
cells with a high probability (>0.99) were retained. Clone labels were 
assigned from using CNV data obtained from DLP+ using CloneAlign 
(version 0.99.0)45. Cell-type annotated matrices for individual patients 
across time points were integrated with Harmony (version 0.1)69 into a 
single batch-corrected matrix. Dimensionality reduction and visualiza-
tion as a UMAP embedding were performed with the Seurat R package. 
Differentially expressed genes (P < 0.001, log(fold change) > 0.25) were 
computed using the Wilcoxon test using clone labels.

Concordance between mtDNA copy number and heteroplasmy. 
Because there are multiple sequencing libraries per sample with cells 
of different average ploidy, we used a stratified and weighted con-
cordance model to identify pairs of heteroplasmy and mtDNA copy 

numbers that were consistently associated. Similar to Kendall’s Tau, 
concordance is a nonparametric measure of correlation that relies 
on the concept of concordant pairs70. The concordance analysis was 
adapted from ref. 71. Briefly, the calculation was done using the con-
cordance function from the survival R package72. As with Somers’ D 
and Kendall’s tau, the magnitude of cscaled captures the strength of the 
effect, with values near −1 or 1 corresponding to strong discordance 
and concordance, respectively. We weighed each observation by the 
number of cells in the corresponding library. A z score was computed 
as unscaled concordance minus 0.5 and divided by the square root of 
the variance, and the resulting value was used to derive a two-tailed 
P value. P values were then corrected for multiple testing using the 
Benjamini–Hochberg method to control the false discovery rate. We 
filtered for highly covered mtDNA variants with at least ten reads sup-
porting the alternate allele. For each variant, we filtered cells with 
heteroplasmy less than 0.05 or greater than 0.95 to prevent clusters of 
cells near 0 or 1 heteroplasmy from erroneously skewing the correla-
tion estimation. Only the variants that had a range of 0.15 were kept 
for downstream analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data associated with the study spans already 
publicly available datasets19–21 and are available at the European 
Genome-Phenome Archive with the accessions EGAS00001006343, 
EGAS00001004448 and EGAS00001003190. The DLP+ and matching 
scRNA-seq data for the two patients with HGSC (patient 022 and patient 
081) from the MSK SPECTRUM cohort are available via dbGaP (acces-
sion phs002857.v2.p1). The processed data are available on Zenodo 
(https://doi.org/10.5281/zenodo.10498240)73.

Code availability
Mutect2 (GATK v4.1.2.0), Samtools (v1.9), CellRanger software (v4.0.0), 
cellassign (v0.99.2) and CloneAlign (v0.99.0) R packages: R (v4.2.3), 
Seurat R package (v3.0.1) and Harmony (v0.1) were used in this study. 
Custom R code to regenerate all figures is available on GitHub (https://
github.com/reznik-lab/mtdna-dlp)74 with the relevant data and instruc-
tions to execute the code.

References
60. Vázquez-García, I. et al. Ovarian cancer mutational processes 

drive site-specific immune evasion. Nature 612, 778–786  
(2022).

61. Shi, H. et al. Allele-specific transcriptional effects of subclonal 
copy number alterations enable genotype-phenotype mapping in 
cancer cells. Nat. Commun. 15, 2482 (2024).

62. Weiner, A. C. et al. Single-cell DNA replication dynamics in 
genomically unstable cancers. Preprint at bioRxiv https://doi.
org/10.1101/2023.04.10.536250 (2023).

63. Alexandrov, L. B. et al. Signatures of mutational processes in 
human cancer. Nature 500, 415–421 (2013).

64. Lai, D., Ha, G., & Shah, S. HMMcopy: Copy number prediction with 
correction for GC and mappability bias for HTS data. HMMcopy, 
R package version 1.44.0 https://doi.org/doi:10.18129/B9.bioc.
HMMcopy (2023).

65. Kwok, A. W. C. et al. MQuad enables clonal substructure discovery 
using single cell mitochondrial variants. Nat. Commun. 13, 1205 
(2022).

66. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. 
Integrating single-cell transcriptomic data across different 
conditions, technologies, and species. Nat. Biotechnol. 36, 
411–420 (2018).

http://www.nature.com/naturegenetics
https://ega-archive.org/studies/EGAS00001006343
https://ega-archive.org/studies/EGAS00001004448
https://ega-archive.org/studies/EGAS00001003190
https://doi.org/10.5281/zenodo.10498240
https://github.com/reznik-lab/mtdna-dlp
https://github.com/reznik-lab/mtdna-dlp
https://doi.org/10.1101/2023.04.10.536250
https://doi.org/10.1101/2023.04.10.536250
https://doi.org/doi:10.18129/B9.bioc.HMMcopy
https://doi.org/doi:10.18129/B9.bioc.HMMcopy


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01724-8

67. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 
177, 1888–1902 (2019).

68. Zhang, A. W. et al. Probabilistic cell-type assignment of single-cell 
RNA-seq for tumor microenvironment profiling. Nat. Methods 16, 
1007–1015 (2019).

69. Korsunsky, I. et al. Fast, sensitive and accurate integration of 
single-cell data with Harmony. Nat. Methods 16, 1289–1296  
(2019).

70. Pencina, M. J. & D'Agostino, R. B. Overall C as a measure of 
discrimination in survival analysis: model specific population 
value and confidence interval estimation. Stat. Med. 23,  
2109–2123 (2004).

71. Benedetti, E. et al. A multimodal atlas of tumour metabolism 
reveals the architecture of gene-metabolite covariation. Nat. 
Metab. 5, 1029–1044 (2023).

72. Therneau, T. M., Lumley, T., Elizabeth, A. & Cynthia, C. survival: 
survival analysis. R version 3.2-3. CRAN.R-project.org/
package=survival (2022).

73. Kim, M. Single cell mtDNA dynamics in tumors is driven by 
co-regulation of nuclear and mitochondrial genomes. Zenodo 
10.5281/zenodo.10498239 (2024).

74. Kim, M. et al. mtdna dlp. GitHub github.com/reznik-lab/mtdna-dlp 
(2024).

Acknowledgements
We acknowledge the constructive feedback of the Shah and Reznik 
Labs. This project was generously supported by the Cycle for Survival, 
the Marie-Josée and Henry R. Kravis Center for Molecular Oncology 
and the National Cancer Institute Cancer Center Core (grant 
P30-CA008748) supporting Memorial Sloan Kettering Cancer Center. 
S.P.S. holds the Nicholls Biondi Chair in Computational Oncology 
and is a Susan G. Komen Scholar (GC233085). This work was also 
funded in part by awards to S.P.S.: Susan G. Komen Breast Cancer 
Foundation (SAC220206), the Cancer Research UK Grand Challenge 
Program (GC-243330) and an NIH RM1 award (RM1-HG011014). E.R. 
was supported by the Department of Defense Kidney Cancer Research 
Program (W81XWH-18-1-0318 and HT9425-23-1-0995), Cycle For 
Survival Equinox Innovation Award, Kidney Cancer Association Young 

Investigator Award, Brown Performance Group Innovation in Cancer 
Informatics Fund and NIH (R37 CA276200). E.R. was also supported 
by a grant from the Alan and Sandra Gerry Metastasis and Tumor 
Ecosystems Center.

Author contributions
S.P.S., E.R. and S.A. conceived and supervised the study. M.K. led 
all data analysis. S.P.S., S.A. and C.O. designed and performed the 
experiments. S.P.S., E.R., S.A. and M.K. designed the statistical model. 
Additional data analysis was performed by A.G., N.C., T.F., I.V., D.G., 
S.S., A.C.W., H.S., A.M., T.P., S.B. and H.J. with genomic data collection 
and analytical methodology development. S.P.S., E.R. and M.K. wrote 
the manuscript with help from M.W., C.T., N.R. and P.A.G. All authors 
provided feedback on and approved the paper.

Competing interests
S.P.S. has an advisory role to AstraZeneca. S.A. is a founder and 
shareholder of GenomeTherapeutics (Inflex) and scientific advisor 
to Sangamo Therapeutics, Chordia Biosciences and the Institute 
of Cancer Research, London. All roles are outside the scope of this 
manuscript. The remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41588-024-01724-8.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41588-024-01724-8.

Correspondence and requests for materials should be addressed to 
Sohrab P. Shah or Ed Reznik.

Peer review information Nature Genetics thanks Konstantin Khrapko, 
Caleb Lareau, and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturegenetics
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival
https://github.com/reznik-lab/mtdna-dlp
https://doi.org/10.1038/s41588-024-01724-8
https://doi.org/10.1038/s41588-024-01724-8
https://doi.org/10.1038/s41588-024-01724-8
http://www.nature.com/reprints


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01724-8

0

250

500

750

1000

1250

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Down−sampling

M
N

R

0

50

100

150

200

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Down−sampling

m
tD

N
A 

re
ad

 d
ep

th

0

10

20

30

40

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Down−sampling

N
um

be
r o

f v
ar

ia
nt

s

0.25

0.50

0.75

1.00

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Down−sampling

H
et

er
op

la
sm

y 
of

 m
ut

an
t c

el
ls

A73044A
A73044B
A73046B
A73047D
A90553C
A90554C
A95628A
A95723A
A95731B
A95732A
A95736A
A96109A
A96139A
A96147A
A96149B
A96161A
A96162A
A96162B
A96172A
A96172B
A96179B
A96184A
A96187A
A96193B
A96194A
A96194B
A96213A
A96216A
A96219B
A96228B
A96233B
A96240A
A96240B

0 1000 2000 3000 4000
mtDNA copy number

10% 20% 30% 40% 50% 60% 70% 80% 90%

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

Muta
nt

W
ild

typ
e

0

100

200

300

Actual

C
el

l C
ou

nt
s Predicted

Mutant

unknown

Wildtype

R = 0.03, p = 5.6x10−16

0

3000

6000

9000

12000

0e
+0

0

1e
+0

7

2e
+0

7

3e
+0

7

4e
+0

7
Total mapped reads

m
tD

N
A 

co
py

 n
um

be
r

a b

g

c

f

d

e

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Robust single-cell quantification of mtDNA copy 
number based on DLP+. a, Scatter plot of mtDNA copy number against total 
mapped read counts for each cell. Two-sided Pearson correlation between 
mtDNA copy number and total mapped reads results in a correlation coefficient 
of 0.03, P < 5.6 × 10−16. Gray-shaded areas represent error bands indicating the 
95% confidence interval, and the blue line indicates the regression line. b, Per-cell  
mtDNA copy number estimation of GM18507 lymphoblastoid cells across  
33 libraries with at least 15 cells (n = 2,281). All boxplots represent the median, 
25th percentile and 75th percentile, and whiskers correspond to 1.5 times the 
interquartile range. c, Downsampling experiment of a SA1090 (OV2295 cell line) 
library (n = 573 cells) showing a gradual decrease in mtDNA read depth from  
right to left. All boxplots in the downsampling experiment represent the  
median, 25th percentile and 75th percentile, and whiskers correspond to 1.5 times 
the interquartile range. d, MNR across all levels of downsampling shows a very 
consistent MNR around 647 (two-sided, two-sample Wilcoxon test against the 
original library; all P > 0.78). e, Boxplot of the number of variants detected across 

all levels of downsampling. Total of 37 variants were detected in the original 
100% sequencing library. On the other hand, the downsampling resulted in a 
very stable number of variants at 36 across all levels. The number of variants 
drastically varied only when the library was down-sampled to 10%. f, Distribution 
of heteroplasmy level of one heteroplasmic variant, m.15500G>A, that was at 
low heteroplasmy level in the original 100% sequencing depth across all levels 
of downsampling. The median heteroplasmy was consistent with the original 
until 30%, below which we saw the median heteroplasmy increase with many 
cells dropping out. Also, more cells exhibited discrete levels of heteroplasmy due 
to lower sequencing depth. All boxplots represent the median, 25th percentile 
and 75th percentile, and whiskers correspond to 1.5 times the interquartile 
range. g, For the same variant, m.15500G>A, the breakdown of the mutant status 
assignment of the cells with the original 100% sequencing depth is as the ground 
truth. At 30% of the original sequencing depth, we start to classify true mutant 
cells as wild-type cells with sensitivity of 0.85 and specificity of 1.
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Extended Data Fig. 2 | mtDNA copy number represents biophysical and 
genomic cellular energy demand. a, Boxplots showing the distribution of 
mtDNA copy number across technical replicates over four different time points. 
P-values from the two-sided, two-sample Wilcoxon test are indicated above. The 
boxplot represents the median, 25th percentile and 75th percentile, and whiskers 
correspond to 1.5 times the interquartile range. ** denotes P < 0.01, *** denotes 
P ≤ 0.001 and no annotation denotes P > 0.1. b, Coefficient of variation in mtDNA 
copy number across cells in TNBC (n = 10) and HGSC (n = 5) samples. Red lines 
indicate a coefficient of variation across breast and ovary bulk tissue tumor 
samples in PCAWG. c, Violin plot of the per-cell mtDNA copy number across 
malignant and nonmalignant cells across four primary tumors with sufficiently 
high nonmalignant cells (OV-022: n = 1,625 cells, OV-081: n = 1,352 cells, SA1047: 
n = 626 cells, SA1135: n = 276 cells, all P < 10−16). Two-sided, two-sample Wilcoxon 
test indicates that malignant cells have a significantly higher mtDNA copy 
number compared to nonmalignant cells across all four tumor samples. The 
boxplot represents the median, 25th percentile and 75th percentile, and whiskers 

correspond to 1.5 times the interquartile range. d, Distributions of cell diameter 
in microns for GM18507 (n = 18 cells) and 184-hTERT diploid cells (n = 1,152 cells). 
e, Coefficient for the diameter term in the linear regression model of mtDNA 
copy number against cell diameter for diploid 184-hTERT and GM18507 cells 
only (n = 4 libraries each). Error bars represent SD of the coefficient values. f, A 
scatter plot showing a positive two-sided Pearson correlation between MNR and 
cell diameter for a sequencing library of a TP53−/− 184-hTERT SA906b cell line, 
A96155B. Gray-shaded areas represent error bands indicating the 95% confidence 
interval, and the red dotted line indicates the regression line. g, Same as f but 
for a sequencing library of a TNBC SA1035 PDX, A95623A. h, Microscopic image 
of a true tetraploid cell from a TP53−/− 184-hTERT breast epithelial cell library, 
SA906-A96228B, taken during cell dispensing as part of the DLP+. The cell size 
is slightly larger than diploid cells in the same library. i, Microscopic image of a 
doublet from the same library. Although the ploidy is estimated as tetraploid, 
there are actually two diploid cells sequenced together.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Within-clone analysis of mtDNA-nuDNA ratio in 
response to whole-genome doubling. a, Total number and proportion of 
diploid and tetraploid cells plotted for each sample. b, Comparison of mtDNA 
copy number between diploid and tetraploid cells across all 9 184h-TERT cell 
lines and 7 tumor samples as well as GM18507 lymphoblastoid cells (two-sided, 
two-sample Wilcoxon test, all P < 7.7 × 10−9). All boxplots represent the median, 
25th percentile and 75th percentile, and whiskers correspond to 1.5 times the 
interquartile range. c, Violin plot of MNR in diploid (n = 3,475) and tetraploid 
(n = 350) cells across all four 184-hTERT breast epithelial cell lines. There is no 
significant difference between the two groups (two-sided, two-sample Wilcoxon 
test, P = 0.067). All boxplots represent the median, 25th percentile and 75th 
percentile, and whiskers correspond to 1.5 times the interquartile range.  
d, Boxplot of the mtDNA copy number distribution of cell cycle-sorted cells in 
different phases, G1, S and G2, across two sequencing libraries of T-47D breast 
cancer cell line, SA1044-A96139A (n = 735 cells) and SA1044-A96147A (n = 823 
cells) and of lymphoblastoid cell line, SA928-73044A (n = 481 cells) and SA928-
A90553C (n = 1,016 cells). All boxplots represent the median, 25th percentile and 
75th percentile, and whiskers correspond to 1.5 times the interquartile range. 
Pairwise significance is indicated by two-sided Wilcoxon tests. e, Same as d, 
but for MNR. f, Bar plot of the median diameter, measured in microns, for both 

diploid and tetraploid cells for each library across the 12 sequencing libraries 
of tumor samples. g, Boxplot of the median, 25th percentile and 75th percentile 
of fold change of median diameter for tetraploid cells over diploid cells across 
the same 12 sequencing libraries in f. The whiskers correspond to 1.5 times the 
interquartile range. h, Graphical model of MityBayes. MityBayes takes raw counts 
of the alternate allele and total depth per cell across mtDNA variants. It infers the 
clonal assignment of the cells based on clone-specific heteroplasmy level and 
weighing of informative variants. i, Heatmap indicating the presence of mtDNA 
variant, m.1429C>T. Each cell indicates a fraction of mutant cells out of the total 
number of cells corresponding to diploid and tetraploid across clones in TP53−/− 
184-hTERT sample, SA906a. This variant is present in both diploid and tetraploid 
cells of clone A. j, Same as i but for m.6869C>T in TP53−/− 184-hTERT sample, 
SA906a. This variant is present in both diploid and tetraploid cells of clone G. 
k, Same as i but for m.6708G>A in SPECTRUM-OV-081 sample. This variant is 
present in both diploid and tetraploid cells of clone C. l, Ranking of the weight 
variable that indicates the probability of the variant contributing to the clonal 
assignment is plotted in a descending order. The real variants were colored in red. 
m, Heatmap of heteroplasmy across clones determined from mtDNA variants. 
The mtDNA variants-based clonal labels are on the top.
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Extended Data Fig. 4 | Transcriptional phenotype of high MNR cells 
compared against low MNR cells in tumors. a, Differential expression of 
mtDNA-encoded genes between clones with the highest and the lowest MNR 

across the tumor samples based on Wilcoxon rank sum test. Colors indicate 
the average log2 fold change, while the dot size indicates the log10 of adjusted 
p-values. b, Same as a but for engineered 184-hTERT cell lines.
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