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Single-mitosis dissection of acute and 
chronic DNA mutagenesis and repair

Paul Adrian Ginno1, Helena Borgers1, Christina Ernst    2,6, Anja Schneider    1, 
Mikaela Behm1, Sarah J. Aitken    2,3,4, Martin S. Taylor    5    
& Duncan T. Odom    1,2 

How chronic mutational processes and punctuated bursts of DNA damage 
drive evolution of the cancer genome is poorly understood. Here, we 
demonstrate a strategy to disentangle and quantify distinct mechanisms 
underlying genome evolution in single cells, during single mitoses and 
at single-strand resolution. To distinguish between chronic (reactive 
oxygen species (ROS)) and acute (ultraviolet light (UV)) mutagenesis, we 
microfluidically separate pairs of sister cells from the first mitosis following 
burst UV damage. Strikingly, UV mutations manifest as sister-specific 
events, revealing mirror-image mutation phasing genome-wide. In contrast, 
ROS mutagenesis in transcribed regions is reduced strand agnostically. 
Successive rounds of genome replication over persisting UV damage drives 
multiallelic variation at CC dinucleotides. Finally, we show that mutation 
phasing can be resolved to single strands across the entire genome of liver 
tumors from F1 mice. This strategy can be broadly used to distinguish the 
contributions of overlapping cancer relevant mutational processes.

Cancers are complex ecosystems of competing clones, developing via 
idiosyncratic evolution. Tumors often arise after decades of chronic 
mutational processes, such as oxidative damage1, and bursts of muta-
gen exposure2. Thus, it is difficult to disentangle mutagenic mecha-
nisms that can trigger transformation in single cells.

Chronic oxidation recurrently damages DNA3, whereas environ-
mental genotoxins such as ultraviolet light (UV)4 or nitrosamines5 
can result in bursts of mutagenesis. Mammals have complex repair 
systems to maintain DNA fidelity, including base excision repair (BER) 
and nucleotide excision repair (NER)6. Although these mechanisms 
can repair most damage7,8, fixed mutations eventually accumulate in 
normal tissues, tumors and cultured cells2. How DNA damage can result 
in mutations is not fully understood.

DNA is chronically challenged by reactive oxygen species (ROS), 
often forming 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-G). 8-oxo-G 
is usually repaired by BER9 but can result in G > T transversions9,10 

following DNA replication1. ROS creates a background mutation land-
scape independent of additional mutagenic exposure10. However, 
studying endogenous ROS mutation patterns is challenging, because 
single oxidative events are rare11.

Acute DNA damage, such as exposure to UV, can compromise 
genome integrity. The resulting bulky lesions include cyclobutane 
pyrimidine dimers or pyrimidine (6-4) pyrimidone photoproducts, 
which can be repaired by NER. The NER process is guided by genomic 
context: global NER resolves bulky lesions across the genome, whereas 
transcription-coupled NER (TCR) is active in transcribed regions12. Muta-
tions in the NER protein XRCC1 result in xeroderma pigmentosum13, 
where patients are UV sensitive. Our work in mouse liver tumors sug-
gests that lesions caused by acute genotoxic exposure predominantly 
arise by DNA replication14,15 result in mutational asymmetry across 
whole chromosomes. Acute and chronic mutagenic processes oper-
ate concurrently, complicating analysis of their individual activities.
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The Phenomex Lightning platform allows penning of individual 
cells and subsequent movement of these cells via light activation of a 
silicon membrane (Fig. 1b and Supplementary Video 1). Penning spe-
cifically refers to the process of moving a single cell into a single well, 
or pen, of the Phenomex chip. This platform can regularly image and 
physically separate sister cells after a single mitotic event. Subsequent 
whole-genome sequencing (WGS) of the expanded populations allowed 
us to determine the mutational landscape of these sister cells. Under 
optimized culture conditions (see Methods), cells divide at a rate com-
parable to that measured in standard cell culture (Extended Data Fig. 1a) 
and the genome typically remains diploid (Extended Data Fig. 1b).

To control for ploidy and cell cycle, we integrated the FastFUCCI 
construct16 through lentiviral transduction into the nonadherent mouse 
cell line P388D1. FUCCI, or Fluorescent Ubiquitination-based Cell Cycle 
Indicator, uses a combination of fluorophores degraded at particular 
times in the cell cycle. The clone selected from this line (PF1) revealed 
fluorophore intensities correlated with DNA content and cell cycle 
phase (red cells: G1, green cells: G2/M; Fig. 1b,c and Extended Data 
Fig. 1c–h). The Phenomex system is equipped with lasers compatible 
with FUCCI fluorophores (Fig. 1b). Cell cycle progression of PF1 cells was 
observed as switches between a G2/M (green) to G1 (red) state (Extended 
Data Fig. 1c). In summary, we have established a controlled system to 
physically separate individual sister cells after a single mitotic cycle.

Here, we present both cell culture and in vivo strategies to 
dissect mutagenic processes active in single cells. We adapted a 
microfluidics platform to track single mitotic events and analyze 
mutational patterns in mitotic sisters, revealing mirror-image and 
genome-wide mutation phasing. Our analyses revise the current model 
of transcription-associated ROS repair, demonstrate UV damage reten-
tion and confirm key predictions of the lesion segregation model14. 
Similarly, by exploiting a first generation mouse cross, we demonstrate 
that mutations can be phased to single-strands of DNA in liver tumors. 
The strategies we present can be broadly used to isolate and analyze the 
concurrent mutational processes driving transformation and cancer 
genome evolution.

Results
Separation of mammalian sister cells after a single mitosis
We exploited a microfluidics system to physically separate two mam-
malian sister cells following a single mitosis. This allowed us to test 
several hypotheses regarding DNA damage and repair. For example, 
established mutations in a single genome should be shared between 
mitotic sisters (Fig. 1a). In contrast, acute damage to the DNA of the 
parent cell should result in the damage, and resulting mutations, not 
being shared and segregating into separate daughter cells14 unless the 
damage is resolved into a mutation before genome replication.
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Fig. 1 | System to distinguish gradual and acute mutational processes in 
mammalian cells. a, Model system to interrogate gradual (ROS, blue) and acute 
mutation pressure (UV exposure, brown) on the mammalian genome. Triangles 
represent gradual accumulation of ROS mutations over several cell generations, 
whereas boxes represent fixed mutations in the genome after a specific cell 
division event. Schematic below depicts the experimental method from standard 
cell culture, exposure to UV, penning single cells, splitting two sister cells into 
separate pens after the first mitosis and finally proliferation/export. b, Images of 
single penned cells and FUCCI fluorophores imaged on the Phenomex Lightning 
platform (left), splitting mitotic sisters with light cages (middle), as well as the 

expanded populations (right). WGS, whole-genome sequencing.  
c, A representative panel of cells (n = 90) imaged to ascertain the intensity of red 
and green fluorophores in 3-h intervals after penning. Cell cycle designation to 
the left of each cluster was determined by the fluorophore intensity at the time of 
penning seen in column 1 and denoted by the gray border. Subsequent heatmap 
columns represent 3 hour imaging timepoints of the same cell. Cell cycle color 
key circle is below. Models to the right implicate theoretical strand-specific 
(blue/yellow) distribution of DNA damage (red triangles) depending on the cell 
cycle phase at the time of UV treatment (timepoint 0).
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Distinguishing gradual and acute mutagenic processes
We reasoned that UV and ROS mutations were distinguishable for two 
reasons. First, both genotoxins have clear mutation signatures. ROS 
causes G > T transversions17–19, whereas UV damage results in C > T 
transitions especially at dual pyrimidines10,20. Second, ROS exposure 
is chronic in cell culture, whereas exposure to UV treatment is a single 
damage event. This has direct implications for resulting variant allele 
frequencies (VAFs).

We treated PF1 cells with an acute 3-s dose of UVC such that approx-
imately 50% of the population proliferated after exposure (Extended 
Data Fig. 2a). After UV treatment, we penned individual cells on the 
Phenomex platform and separated sisters after a single mitotic divi-
sion. Hereafter, we refer to each unique single pinned cell as a clone, 
denoted by clone A, B, C, etc (Fig. 2a), and the terms ‘sister 1’ and ‘sister 
2’ represent the first mitotic sisters. For example, clone A1 represents 
sister 1 from the singly penned clone A, whereas clone A2 represents 
sister 2 from the same singly penned clone A (Fig. 2a).

We expanded 14 daughters from 7 independent mitoses into clonal 
colonies large enough to perform WGS. Each genome was sequenced 
to ≥ 20x mean coverage, and mutations called against untreated cells. 
All clones contained ~6,000–9,000 mutations per genome (Fig. 2b) 
and mutation signatures had high similarity to COSMIC20 SBS7a/b 
and SBS18, patterns attributed to UV20,21 and ROS, respectively (Fig. 2e, 
Extended Data Fig. 2b, c). We reasoned that sister cells should contain 
a similar number of mutations arising from each mechanism. Indeed, 
mutation frequencies were nearly identical between mitotic sister 
genomes (Fig. 2b).

We surmised that mutations arising from acute UV damage should 
not be shared between mitotic sisters, because each sister inherits 
separate independently damaged strands. Roughly 90% of C > T transi-
tions characteristic of UV damage were unique to a single mitotic sister 
(Fig. 2c,d, upper). In contrast, sister-shared mutations (~33% of total) 
were predominantly G > T transversions, sharing a signature most simi-
lar to SBS1820 and suggesting they are ROS-induced mutations (Fig. 2d, 
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Fig. 2 | Resolving acute and chronic mutational processes. a, Schematic of 
separation experiment and nomenclature for mitotic sisters and clones.  
b, Number of mutations between sister pairs for distinct mutational processes; 
each point is one sister pair. Scatterplots represent the number of mutations 
between sisters for G > T (ROS, blue), C > T (UV, red) and other (gray). c, Barplot of 
mean overlap of mutations in percent between 7 mitotic sister pairs, consisting 
of 14 genomes. Unique refers to mutations for each single sister cell, sister shared 
represents mutations shared between mitotic sisters, and clone shared refers 
to mutations shared with other clones. Points are overlaid for each individual 
genome. d, Mutation signatures for each category in panel c, where each bar 

represents a specific type of mutation (identity key next to panel e) in a specific 
trinucleotide context (96 total bars). e, COSMIC reference signature with highest 
similarity to panel d. f, VAF for mutations shared between mitotic sisters. g,h, VAF 
as in panel f but for ROS mutations (g) and UV mutations (h) unique to each sister 
cell, respectively. i, Pearson’s median skew of the VAF populations in panels f–h. 
Each box represents 14 measurements for the specific mutation category from 
each sister genome. Boxplot elements: median is the thick middle line, quartiles 
1–3 are represented by the colored boxes, and whiskers denote the minimum and 
maximum of nonoutlier values.
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middle; and Extended Data Fig. 2c), which agrees with background 
mutations observed in cell culture10 and 8-oxo-G mutagenesis in human 
dermal fibroblasts22. Finally, mutations shared between independent 
clones are rare (Fig. 2c), suggesting each clone is the result of a unique 
evolutionary trajectory.

We hypothesized that G > T transversions shared between mitotic 
sisters represent the landscape of ROS mutations present in the single 
clone when it was penned (Fig. 1a). If true, these mutations would 
have a VAF of 50%, as both sister cells inherit one mutated allele. In 
contrast, mutations accrued at later timepoints should have a posi-
tive skew in the VAF distribution. Indeed, shared mutations had a 
clear and distinct VAF of 50% (Fig. 2f; compare with Extended Data 
Fig. 2d). In contrast, sister-unique G > T transversions had a reduced 
VAF and more positive skewing in the VAF distribution (Fig. 2i), sug-
gesting they arise after sister clone separation (Fig. 2g). The hypothesis 
that shared mutations were ancestral is supported by the observa-
tion that the four sister genomes with higher clonal mutation shar-
ing (Fig. 2c, bottom) are derived from two singly penned clones on 
the same Phenomex chip (Extended Data Fig. 2e). Finally removal 
of shared mutations increased similarity to SBS7a (Extended Data 
Fig. 2f). In conclusion, UV mutations are unique to each sister while 

ROS mutations can be subdivided into ancestral and sister-specific  
accrued mutations.

UV lesion retention causes multiallelic variation
The bimodal VAF distribution for UV mutations suggested rounds of 
nonmutagenic replication over persistent lesions (Fig. 2h). Such lesion 
persistence could allow for the incorporation of distinct alternate bases 
from consecutive S-phases, a phenomenon termed multiallelism14. 
Multiallelism is the observation of more than one alternative allele at a 
single genomic position. We sought to determine if multiallelism could 
be observed for mutations with a UV signature in our data.

Identifying multiallelism for UV damage is challenging because 
only (C > T) transitions are observed at a single position. We therefore 
extended our observation to tandem CC mutations, because three pos-
sible alleles can result (CC > TT, CC > CT and CC > TC). Although dinu-
cleotide mutations represent only ~2.2% of all UV mutations across the 
7 sister pairs sequenced, the well-described23,24 CC > TT event (Extended 
Data Fig. 3a–c) is most common23,24. We identified reads fully overlapping 
CC > TT tandem mutation events (n = 373 sites), and discovered the pres-
ence of more than one alternative allele in single clones supported by 
read-level data (Fig. 3a, left). This indicated that an unrepaired UV lesion 
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can result in the generation of both dinucleotide and mononucleotide 
substitutions at the same site. This observation is distinct from biallelic 
mutations previously reported in melanoma where both haplotypes are 
mutated25. We confirmed and quantified this observation in a genome 
alignment independent manner (Methods and Extended Data Fig. 3d–g).

We next asked whether both bases at each CC > TT dual muta-
tion site have the same VAF. Differing VAFs between neighboring 

cytosines would provide evidence that each mutation was fixed 
in a different cell cycle (Fig. 3a, left). In contrast, identical VAFs 
between neighboring cytosines indicates a simultaneous muta-
tional event (Fig. 3a, right). Identical VAFs (biallelic mutations) 
were observed for 70.2% of CC > TT dual mutations (Fig. 3b, black 
points; n = 262 sites), while 29.8% of VAF pairs at tandem mutation 
sites were different (Fig. 3b, red points). This analysis revealed 
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that multiple alternative alleles were present at a subset of tandem  
mutation sites.

We next reasoned that VAFs at multiallelic sites could reveal the 
order by which mutations were introduced. Indeed, the observed 
2:1 ratio of the VAFs for the first and second most common alternate 
alleles was consistent with multiple error-prone replication events 
over an unrepaired pyrimidine dimer (Fig. 3c). The dominant sequence 
mutated within these dimers is the 3’ cytosine, occurring in 85 of 111 
multiallelic sites (Fig. 3d and Extended Data Fig. 3c,d). Situations where 
an initial 3’ cytosine mutation was followed by a double cytosine muta-
tion in the next mitosis were approximately as common as the opposite 
order. In contrast, alleles with a single mutation at the 5’ cytosine occur 

in 22.2% of multiallelic sites. Almost no combination of single mutation 
events at these loci was observed, such as CC > CT followed by CC > TC. 
We considered that either an adjacent pyrimidine, or multiple adjacent 
pyrimidine dimers, located 3’ to the CC site could account for the 
observed 3’ bias. To test this, we measured base composition surround-
ing multiallelic sites and compared it to both biallelic and randomly 
sampled CC sites across the genome. On the contrary, pyrimidines were 
significantly enriched directly 5’ from CC dual mutations (p < 0.005,  
Fisher’s exact test, Benjamini-Hochberg corrected, Extended Data 
Fig. 3h), arguing that the 3’ bias is not caused by a dimer directly down-
stream of multiallelic sites. Nevertheless, we cannot completely rule 
out that an additional dimer in an NpCpCpN context influences the 
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mutation bias. Taken together, we reveal UV-induced multiallelic vari-
ation at dual CC sites, and that most consecutive mutation events are 
CC > CT and CC > TT, in either order.

Transcription-associated ROS repair is strand agnostic
We next asked how UV and ROS mutation rates are affected by transcrip-
tional activity and chromatin accessibility. TCR is a well-documented 
phenomenon26 from prokaryotes27 to humans28, where DNA damage 
causes a transcribing RNA polymerase to stall, triggering NER29. We first 
determined bulk RNA levels from the PF1 line (Fig. 4a and Extended Data 
Fig. 4a,b) and binned genes based on tags per million (TPM) (Fig. 4b) 
(bin 1 = 10.6,000 unexpressed genes, bins 2–4 = ~2,800 expressed 
genes). As expected, active transcription significantly suppressed 
mutational rates ascribed to both UV28–31 and ROS32–36 (P = 1.7 × 10−6, 
two-tailed Mann-Whitney test; Fig. 4c). Both mutation rates were lowest 
in highly transcribed gene bodies, consistent with previous estimates 
for TCR in the case of UV (Fig. 4c)31.

A hallmark of TCR is that lesions are repaired specifically on the 
template strand37,38. Given the well-described UV mutation mechanism, 
C > T mutations in minus-strand genes or G > A mutations overlapping 
plus-strand genes result from damage to the template strand (Fig. 4d). 
As expected, the template strand mutation rate in expressed genes is 
approximately 10% of the total genomic rate of UV-associated mutagen-
esis (Fig. 4e, upper), which is likely an underestimate of the repair rate 
(Extended Data Fig. 5). Using the same rationale, we assigned ROS 
mutations to either the template or non-template strand assuming 
8-oxo-G as the lesion22. Contrasting with prior observations39, ROS 
repair appeared to occur equally on both template and non-template 
strands (Fig. 4e, lower) for both shared and unique ROS mutations 
(Extended Data Fig. 4f). Together, these data demonstrate that tran-
scriptional activity correlates with reduced mutation rate from both 
UV and ROS, yet only UV repair is strand asymmetric.

The reduction in ROS mutation rates within transcribed gene bod-
ies was expected32,34,35, but the symmetry in template and non-template 
mutation rates was unanticipated40. We asked whether local chromatin 
accessibility as measured by ATAC-seq (Extended Data Fig. 4c–e) may be 
partially responsible. Globally, mutation rates within ATAC peak regions 
for UV and ROS were 50% and 32% of the genome average, respectively 
(Fig. 4f), in agreement with higher repair rates in open chromatin40. There 
was a clear decrease in chromatin accessibility around both UV (37,756) 
and ROS (28,184) mutations (Fig. 4g). Furthermore, ROS mutations 
revealed a stronger local depletion in ATAC signal, suggesting that BER 
is less efficient in detecting damaged bases in more highly compacted 
chromatin. Actively transcribed gene bodies tend to have greater accessi-
bility than silent genes (Extended Data Fig. 4g) as well as increased OGG1 
recruitment (Extended Data Fig. 4h, previously published ChIP data41). 
In sum, our data suggest that the decrease in ROS mutation rates in 
transcribed gene bodies is not triggered by canonical TCR detection but 
at least in part due to increased local accessibility for repair machinery.

Mutational phasing is a unique to acute mutagenic exposure
A prediction of the lesion segregation model14 is that a single, acute 
mutagenic exposure will cause mutation strand phasing. In contrast, 

although ROS damage is likely subjected to lesion segregation during 
each cell division, its gradual accumulation over many cell generations 
would be expected to erase any mutational asymmetry. Our system 
provides an ideal landscape to test this hypothesis, where acute and 
chronic mutational processes occur in the same genome yet their sig-
natures can be readily identified.

We separately considered the mutation counts and genomic dis-
tribution of SBS7 UV mutations (C > T / G > A) and SBS18 ROS mutations 
(C > A / G > T) (Extended Data Fig. 5a), which confirmed the expectation 
of chromosome-scale mutational asymmetry and strand-phased UV 
mutations in sister clones (Fig. 5a,b; P < 1 × 10−15; permutation based rl20 
metric14). In contrast, ROS mutations did not show mutational asymme-
try in bulk analysis (Fig. 5a,b) or when partitioned into sister-shared and 
sister-unique mutations (Extended Data Fig. 5b). Direct comparison 
to Bernoulli models (Fig. 5c,d and Extended Data Fig. 5c,d) confirms 
the strand distribution of UV mutations is a good fit to a single burst 
of DNA damage followed by lesion segregation with random strand 
retention (Fig. 5e, upper). In contrast, the strand distribution of ROS 
mutations closely matches expectation for the random assignment of 
mutations to DNA strands (Fig. 5e, lower). Taken together, these results 
suggest pulse UV mutagenesis is fixed during post-exposure mitosis 
in a strand-specific manner, whereas chronic ROS exposure resembles 
progressive mutation accumulation over many cell generations.

Mirror-image mutation phasing in mitotic sisters
In the first mitosis following UV damage, complementary 
lesion-containing DNA strands are expected to segregate into sepa-
rate daughter cells (Fig. 6a). When both copies of a diploid chromo-
some inherit the C > T phase of lesions in mitotic sister 1, mitotic sister 
2 exhibited the complementary G > A asymmetry (Fig. 6b, chromo-
some 17). When mitotic sister 1 inherits a C > T and a G > A allele, the 
same occurred in mitotic sister 2, resulting in a mix of both mutation 
types (Fig. 6b, chromosome 8). If a sister chromatid exchange (SCE) 
event occurred14, equivalent positions on the affected chromosome 
showed a transition from mixed to opposite asymmetry between 
mitotic sisters (Fig. 6b, chromosome 2). At the genome scale, sister 
cells shared mixed segments while revealing opposite asymmetry 
in phased regions (Fig. 6c). Notably, all seven pairs of mitotic sisters 
exhibited mirror-image mutational asymmetry across their genomes  
(Fig. 6d).

We sought to quantify the significance of this mirror-image muta-
tion phenotype by comparing mutation skew in 10-Mb genomic win-
dows for all clones and sister pairs. For mitotic sisters, mirror-image 
phasing patterns should result in a linear negative relationship. For 
unrelated clones, the prediction would be a random relationship in 
their phasing because their UV mutations are independent damage 
events. In our data, on average, segment phasing patterns of sister 1 
explained 49% of the variance in phasing patterns for sister 2 from a 
single division event. In contrast, the variance in phasing patterns for 
clone A explained less than 1% of the variance in phasing for clone B 
(Fig. 6e). In sum, these findings demonstrate that acute UV damage 
produces mirror-image mutation phasing patterns in mitotic sisters, 
independent of selection.

Fig. 6 | Mitotic sisters have mirror-image mutation distributions across 
the genome. a, Model of lesion segregation creating mirror-image mutation 
patterns between mitotic sisters. Replication of damaged DNA creates stranded 
mutations, and sister cells from the subsequent division inherit either only one 
type of strand (upper) or one of each strand (middle) or can undergo SCE and 
switch from a mixed to a phased segment (lower). b, Representative examples 
for each strand inheritance type depicted in panel a. c, Scatterplot of C (yellow) 
and G (blue) UV mutations across all chromosomes for one mitotic sister pair. 
Lightly colored yellow/blue/gray background represents segmentation from 
changepoint analysis. d, Segmentation heatmap for all 7 pairs (14 total genomes). 
Color legend of phasing noted below heatmap, mitotic sisters are adjacent to 

each other with a white gap between clones. e, Test for mirror-image mutation 
patterns. Heatmap represents the correlation coefficient (Pearson’s R) for 
mutation skew between mitotic sisters and clones. Smooth scatterplots to the 
right represent skew correlations between an example of mitotic sisters (top) and 
clones (bottom). f, Diagram demonstrating how recombined strand mutations 
are determined. g, Metaplot of mutations/megabase (mu/Mb) for recombined 
and non-recombinant strands (brown and gold respectively), as well as mutation 
density for regions where one strand is not uniquely assignable. Window 
represents 20-Mb flanking the SCE site shown at 0 (vertical gray line). Individual 
points represent smoothed 1-Mb sliding windows with a 100-kb step size.
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We next explored another specific segmentation phenotype: 
switches in phasing within a single chromosome (Fig. 6a,b, bottom 
panels). If these switches reflect sister chromatid exchange, then 

reciprocity between two mitotic sisters should be observed (Fig. 6a, 
bottom). Indeed, this segment switching was evident at 130 total posi-
tions across all samples, with approximately one crossover event per 
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chromosome (mean 0.92; Fig. 6b–d). As both normal lymphoblast 
and fibroblast cells from healthy human patients are estimated to 
have roughly five SCE events per mitosis42, our fourfold elevation 
suggests UV damage is responsible for this increase in SCE, consist-
ent with previous studies43–45. There was a modest increase in muta-
tion density around SCE sites (Extended Data Fig. 6c), suggesting 
locally increased UV damage may trigger an SCE event. We sepa-
rated mutations based on whether they originated from the recom-
bined or non-recombined strand (Fig. 6f), revealing a clear trend 
for increased mutation density on the strand undergoing recom-
bination (Fig. 6g). In conclusion, elevated local UV damage rates  
on one strand of DNA are more likely to trigger an SCE event  
during the first mitotic cycle.

Haplotype resolved mutations in F1 mice liver tumors
In N-nitrosodiethylamine (DEN)-induced liver tumors from inbred 
male mice, the vast majority (~95%) of mutations are phased on the 
hemizygous X chromosome14. We reasoned that assigning muta-
tions to a single haplotype would reveal a similar phasing phenotype 
across the entire genome. An ideal model for this is the F1 progeny 
from a mouse cross where the parents have substantial germline 
single-nucleotide polymorphisms (SNPs). The C3H and Mus cas-
taneus (CAST) mouse subspecies produce viable offspring and their 
genomes differ by 20 million SNPs46. Given the SNP genomic distri-
bution, paired-end 100-bp sequencing allows ~60% on average of all 
unique reads to be assigned to a single haplotype (Extended Data  
Fig. 7a,b and Methods).
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We injected two F1 mice at P15 from a CAST and C3H cross with DEN 
and isolated 6 tumors 30 weeks later (Fig. 7a and Methods). We carried 
out WGS (≥20× mean; Extended Data Fig. 7c) of these tumors and used 
N-masking47 to map reads to a modified C57BL/6 reference genome. 
Acute DEN treatment predominantly induced mutations by damaging 
T bases (38.5% T, 37.3% A, 12.4% C, 11.8% G) with total mutations, muta-
tional signature, and stable chromosome copy number as documented 
previously14 (Fig. 7b and Extended Data Fig. 7d,e). Haplotype-agnostic 
mutations reproduced a lesion segregation phenotype identical to that 
found in the inbred parental strains (Fig. 7c).

By exploiting the co-occurrence of germline SNPs with mutations 
on the same read, we could phase 91.9% of mutations to either the 
C3H or CAST genomes (Fig. 7d,e and Extended Data Fig. 7d). We used 
the single copy X chromosome to estimate our false assignment rate 
as ~0.27% (s.d. = 0.25). Once mutations were accurately assigned by 
haplotype, segments with mixed mutational patterns resolved into 
two phased component alleles (Fig. 7f). For example, in the absence 
of haplotype assignment, Chromosome 2 of a representative tumor 
is a mixture of T > N and A > N mutations. Resolving the mutations 
by haplotype reveals that the CAST allele contains the vast majority 
of T > N mutations, whereas the C3H allele has predominantly A > N 
mutations. Switches in mutational phasing are now clearly resolved 
to a single, recombined allele (Fig. 7f, chr3).

After segmenting haplotype resolved mutations using change-
point48 analysis, the mutational landscape of each autosome was vir-
tually identical to that found on the single X chromosome (Fig. 7g). 
In total, 95.6% (standard deviation = 0.92%) of allelic mutations are in 
agreement with their phase, comparable to the X chromosome (94.9%; 
Extended Data Fig. 7f). This relationship held true for five additional 
tumors from these two mice (Fig. 7h). Taken together, resolving muta-
tions to single alleles demonstrates complete mutational phasing 
across the genome.

We next tested whether the T < > A mutation phasing pattern 
found in each tumor genome was independent of the phasing found 
in other tumors. In agreement with this assumption, phasing in 10-Mb 
bins revealed an average Pearson’s correlation of 0.07 when compared 
between tumors (Extended Data Fig. 7g right, h-I). Although C > N 
and G > N mutations make up only ~20% of the data, these mutations 
are also phased in a manner analogous to T < > A segments (Extended 
Data Fig. 7g, left). Given T lesions result in the predominant DEN muta-
tion signature, this suggests that damaged pyrimidine bases cause 
the majority of tumor mutations. Furthermore, C < > G phasing reca-
pitulates intrachromosomal T < > A phase switches (140/140), suggest-
ing these are indeed sister chromatid recombination events. Taken 
together, the use of F1 mouse crosses allowed DEN-induced mutational 
phasing to be assigned to single DNA strands.

Discussion
Cancer genomes chronically accumulate genetic changes in parallel 
among competing clones49–51. Here, we describe a method to identify 
and disentangle two distinct genomic mutation processes in single 
cells: acute UV and chronic ROS. We interrogate mutations in mam-
malian mitotic sister cell populations post UV exposure. Our data show 
that UV lesions can persist for more than one cell cycle, driving multi-
allelic variation in CC dinucleotides. Mitotic sisters inherit genomic 
mirror-image mutation phasing, following a random inheritance of 
strands, analogous to a set of Bernoulli trials. Reciprocal intrachro-
mosomal switches in phasing provide direct evidence of sister chro-
matid exchanges. In contrast, chronic ROS damage does not show 
strand-specificity in phased mutations or transcription-associated 
repair. Lastly, we demonstrate at a single chromatid level that almost 
all mutations are phased in tumors from F1 mice.

Our repurposing of a microfluidics system uniquely accounts for 
cell cycle state, cell division number and expansion rate. Analyzed cell 
lines can be genetically modified and/or be tested with a diverse array 

of mutagens. Similarly, F1 animals from inbred subspecies minimize 
genetic heterogeneity while providing haplotype-specific informa-
tion. Our model systems have limitations. First, Phenomex requires 
nonadherent cells. Second, our strategies do not perfectly recapitu-
late specific aspects of human tumors, including cell cycle, genetic 
heterogeneity, and mutagenic exposure. Our mechanistic insights are 
nevertheless relevant to human cancers because: (1) phased mutational 
profiles are seen in patient data14,52, (2) UV mutation signatures are 
found in human skin cancers, and (3) we recapitulate reciprocal muta-
tion phasing of the mitotic sister predicted to occur at transformation 
but lost during clonal expansion. In addition, we show that consistent 
with recent findings from human development and homeostasis53, 
multiallelic variation is observable in the absence of transformation. 
These findings provide further evidence that lesion segregation is a 
ubiquitous feature of mutagenesis following DNA damage.

Cancer genome evolution is considered a Darwinian process54 
wherein random mutagenesis and selective pressure determine clonal 
expansion. Our approach exploits microfluidics to separate sister cells 
and decouple mutational pressure from positive selection, enabling 
the fate tracking of the forward and reverse strands of both alleles. We 
establish in our system that UV damage is resolved into phased muta-
tions following DNA synthesis. This mutation pattern parallels a model 
where clonal expansion of a primordial cell creates shared ancestral 
mutations55. In our case, sister cell populations continue to accumu-
late ROS damage, resulting in a heterogeneous mixture of mutations 
in punctuated equilibrium56. Cancer genome analysis could exploit 
mutational phasing as a fingerprint of the originally transformed cell.

How oxidatively damaged bases such as 8-oxoG8 are repaired 
remains actively debated57–59. To date, nucleosomal positioning60, tran-
scriptional activity36,61 and the FACT complex62 have been implicated 
in resolving ROS damage, and our results newly inform how chromatin 
accessibility may also contribute. First, we can assign base damage to a 
specific DNA strand, because the dominant C > A mutation likely arises 
from oxidized G bases. Second, our method can analyze how UV and 
ROS damage are simultaneously handled by parallel repair processes 
in the same cell. Third, we found that pyrimidine dimers do not alter 
the repair of ROS lesions associated with transcription, because we 
can distinguish oxidative damage occurring before and after UV expo-
sure. Our data collectively support a model where oxidative damage 
is repaired better in transcribed gene bodies but strand agnostically. 
Although stranded BER has been described in yeast34 and humans39 and 
for other oxidized bases35, in our system, it does not appear to shape 
the repair of 8-oxo-G.

Our work decouples mutagenesis from selection to study how DNA 
damage shapes the mammalian genome. This framework for mechanis-
tic analysis can be flexibly applied to separate otherwise-confounding 
mutational processes that co-occur in cells.
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Methods
Tumor induction in CASTxC3H F1 mice
Animal experimentation was carried out in accordance with the Ani-
mals (Scientific Procedures) Act 1986 (United Kingdom) and with 
the approval of the Cancer Research UK Cambridge Institute Animal 
Welfare and Ethical Review Body. Inbred female M. musculus castaneus 
(CAST/EiJ) mice were crossed with inbred male C3H/HeOuJ (C3H) mice. 
The F1 male offspring were treated with a single intraperitoneal dose 
of DEN (Sigma-Aldrich N0258; 20 mg kg−1 body weight) as described 
previously14. Liver tumors were isolated 30 weeks after treatment, 
flash frozen in liquid nitrogen and stored at −80 °C for DNA extrac-
tion and sequencing. Liver tissue from an untreated P15 litter mate 
was sampled for control experiments. Control samples (liver tissue) 
were also collected from untreated, age-matched littermates. Animals 
were maintained using standard husbandry: mice were group housed 
at room temperature/humidity in Tecniplast GM500 IVC cages with a 
12 h:12 h light:dark cycle and ad libitum access to water, food (LabDiet 
5058), and environmental enrichments.

F1 liver tumor genomic DNA extraction
Liver DNA was extracted using the Qiagen AllPrep DNA/RNA Mini Kit. 
Approximately 30 mg tumor was placed in 600 μl buffer RLT sup-
plemented with 10 µl ß-mercaptoethanol. A 5 mM stainless steel bead 
(Qiagen, #69989) was added and the sample shaken for 2 x 20 s at 15 Hz 
on the Qiagen TissueLyser II. The lysate was centrifuged through an 
AllPrep DNA spin column for 30 s at 8,000 × g, washed with 500 µl 
buffer AW1 and 500 µl AW2 and eluted in 100 µl buffer AE.

Cell culture and splitting on the Phenomex Lightning platform
P388D1 cells from ATCC were cultured before and during incubation on 
the Phenomex Lightning system using 5% C02 at 37 °C in DMEM supple-
mented with 10% fetal bovine serum, 2.5 mM L-glutamine, 1x Pen-Strep 
and 5x B27. The purpose of excess B27 was to reduce free radicals in the 
media. The incubator proliferation assay was carried out in triplicate 
by plating 2.5 × 105 cells in six-well plates. At 24-h timepoints, live cells 
were counted using trypan blue and a Countess 3. Doubling rates for 
incubator cells were calculated as for Phenomex (below). For Phenomex 
cell cycle FUCCI measurements (Extended Data Fig. 1c), cells were 
imaged in 3-h windows over the course of 15 h.

Before Phenomex penning, a full clean was carried out as per 
the manufacturer’s instructions. After UV treatment (<30 min), PF1 
cells at a concentration of 2 × 106/mL were penned as singlets and 
images acquired in ambient light, FITC and Texas Red excitation, and 
cell number/pen counted using the Jurkat CNN algorithm. One day 
after penning, cells were assayed for doublings using the cell analysis 
suite of Phenomex and singlet cells that were in G1 at time of pen-
ning (Texas Red, no FITC) were split. Default settings for manual OEP 
were used to move cells except wavelength voltage was increased to 
6. Cells proliferated for 4–6 days and were exported to 96-well plates. 
Approximately 2 × 106 clonal cells were used in DNA extraction and 
WGS library preparation.

For calculating doubling rates, cell numbers were obtained over 
a 64-h period using a minimum of four measurements. Pens that did 
not proliferate were removed, and a linear model was fit whereby the 
log2(cell counts) were regressed on time in hours of culture. The mean 
adjusted R2 for all fits was 0.905 with a standard deviation of 0.166 
(n = 998). The slope of the fit represented doublings per hour and was 
multiplied by 24 to represent divisions per day.

Introduction of the FastFUCCI system in P388D1
The lentiviral vector pBOB-EF1-FastFUCCI-Puro obtained by AddGene 
was transformed into DH5α E.coli and midi-prepped (Qiagen MidiKit). 
Lentiviral packaging vectors VSVG and R8.91 were a kind gift from the 
lab of Michaela Frye. 5 × 106 Lentix HEK293T cells from Takara were 
transfected with 12, 5 and 12 µg FastFUCCI, VSVG and R8.91 vectors using 

Lipofectamine 3000. Media from day 2 and 3 of the transfected Lentix 
cells was sterile filtered (0.45 µM) and ultracentrifuged @ 77,125 × g @ 
4 °C for 90 min. The pelleted virus was resuspended in 100 µl Opti-mem 
media. 1 × 106 P388D1 cells were resuspended in 1 ml media with 25 µl of 
the concentrated virus. 24 h after transfection, fresh media with 2 µg 
ml−1 puromycin was added and selection carried out for 48 h. Selected 
cells were passaged four times and single cells with GFP signal were FACs 
sorted. The PF1 clone was selected from this line after subsequent FACs 
analysis where both GFP and Kusabira orange 2 signal was analyzed.

Hoechst and FACS analysis
Two drops of Hoechst 33342 Ready Flow Reagent from Invitrogen 
was added to 2 × 106 cells and incubated for 15 min. Cells were spun, 
resuspended in Miltenyi Biotec FACs buffer and assayed using the BD 
FACSAria Fusion 3. Green fluorophores were excited at 488 nM with 
emission at 530 nM, whereas orange fluorophores were excited at 
561 nM with emission at 586 nM. Fluorophores in Phenomex Lightning 
were detected using the FITC and TRED excitation/emission filters 
in the Cell Analysis Suite. Hoechst staining was measured at 375 nM 
with emission at 450 nM. To determine FACs signal overlap between 
fluorophores and Hoechst, 10,000 cell measurements were read into 
R, Hoechst signal was split into 100 bins and cell cycle fluorophores 
scaled from 1 to 100 and intensities were compared.

UV treatment conditions
To determine UV intensity, 2.5 × 105 PF1 cells in 500 µl media were plated 
in six-well dishes. UVC treatments used the Analytik Jena crosslinker 
(model CL-1000, 254 nm) at exposures of 5,000–30,000 µJ/cm2 
(Extended Data Fig. 2a). After treatment, 2 ml fresh media was added 
and cells cultured for 3 days. Cell numbers were counted in triplicate 
using the Countess 3 from Thermo Fisher. UV at 5,000 µJ/cm2 was used 
given roughly half of the cells proliferated post treatment.

P388D1 genomic DNA extraction
Cells were pelleted (5 min @ 500 × g), washed with 1 ml PBS and resus-
pended in 200 µl PBS. DNA was extracted with the Qiagen DNeasy kit. 
After resuspension in 200 µl PBS, 20 µl proteinase K and 200 µl buffer 
AL were added, briefly vortexed and incubated for 30 min at 56 °C with 
rotation @ 400 rpm. Next, 200 µl 100% EtOH was added, and the lysate 
was spun through a DNeasy mini spin column at 8,000 × g for 1 min. 
The column was washed with 500 µl AW1 and 500 µl AW2, then spun 
at 18,000 × g for 3 min. To elute DNA, 100 µl buffer AE was added, the 
column was incubated for 5 min at 37° and spun for 1 min at 8,000 × g.

Whole-genome library construction and sequencing
Genomic DNA size and quality was assayed using the NanoDrop and 
Agilent 4200 TapeStation. Libraries were prepared using 100–500 µg 
DNA and the NEBNext Ultra II kit with Unique Dual Index primers for 
Illumina. Enzymatic fragmentation was carried out for 15 min instead 
of 5. Libraries were amplified between four and six cycles using the 
NEBNext UDI primers (article E6440). Library size and molarity was 
determined using the TapeStation system and libraries pooled at a 
concentration of 2 µM. Paired-end 100 bp sequencing was performed 
using the NextSeq 2000 and NovaSeq platforms.

Total RNA extraction and library preparation
Total RNA was extracted from three replicates of 106 PF1 cells using 
the RNeasy Plus Mini kit from Qiagen. Total RNA quality and quantity 
was assayed using the RNA ScreenTape on the Agilent TapeStation 
system. 100 ng total RNA from each replicate was processed with the 
TruSeq Stranded total RNA with Illumina Ribo-zero Plus RNA deple-
tion protocol. Libraries were quantified using the TapeStation High 
Sensitivity D5000 ScreenTape and QuBit dsDNA High Sensitivity kit. 
Libraries were Sequenced on the NextSeq 2000 with 50 bp paired-end 
reads (100 cycle P2 chemistry).
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Omni-ATAC library preparation
Omni-ATAC63 libraries were carried out with slight modifications64,65. 
Pellets of 50,000 cells were washed in 100 µl PBS and resuspended in 
50 µl lysis buffer (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% 
NP-40, 0.1% Tween-20 and 0.01% Digitonin). After 3-min incubation on 
ice, 1 ml wash buffer was added (10 mM Tris-HCl pH 7.5, 10 mM NaCl, 
3 mM MgCl², 0.1% Tween-20) and centrifuged for 10 min at 500 × g at 
4 °C. Nuclear pellets were resuspended in 50 µl transposition mix (25 µl 
2X Tagment DNA buffer (Illumina), 16.5 µl PBS, 0.5 µl 10% Tween-20, 
0.5 µl 1% Digitonin, 2.5 µl Tn5 Tagment DNA enzyme (Illumina) and 5 µl 
H20). Nuclei were incubated 30 min at 37 °C, DNA cleaned using the 
Qiagen MinElute Reaction Cleanup kit and eluted in 10 μl elution buffer. 
Libraries were amplified for five cycles using the universal primers and 
barcoded primers A2.1, A2.2 and A2.3 (ref. 65) for replicates 1, 2 and 3, 
respectively. An additional 8 cycles were determined using qPCR65 and 
carried out. Libraries were sequenced on the NextSeq 2000 platform 
using paired-end 50 bp reads (100 cycle kit, P2).

Whole-genome and ATAC alignment and filtering
Raw reads were trimmed with the TrimGalore66 using Python 3.6.1 
(ref. 67) and the –stringency 3 flag. WGS and ATAC reads were mapped 
with bowtie2 (ref. 68) using the–end-to-end and–maxins 1,000 flags. 
PF1 samples used the mm10 reference genome while a dual-hybrid 
N-masked reference genome (see below) was used for F1 tumors. Bam 
files were processed with samtools v1.102 (ref. 69) matefix and mark-
dup tools and filtered using the 0 × 2 flag. The analyzable fraction of 
the genome was determined by counting reads in 1-kb windows for 
triplicate negative control samples using bedtools 2.24.0 (ref. 70). 
Regions with ≥1 standard deviation from the mean in two of the three 
replicates were excluded corresponding to 10.2% of the genome. X 
chromosome counts were doubled in this analysis to account for the  
single copy.

Dual-hybrid N-masked reference for WGS F1 tumor haplotype 
discrimination
The SNPsplit47 program was used to create a dual-hybrid reference 
where germline SNPs from both C3H and Mus castaneus were replaced 
with ‘Ns’ in the mm10 reference using the command:

SNPsplit_genome_preparation–vcf_file mgp.v5.merged.snps_all.
dbSNP142_UCSC.vcf–strain C3H_HeJ–reference_genome BSGenome_
mm10.fasta–full_sequence–nmasking–dual_hybrid–strain2 CAST_EiJ

Germline SNPs in reference to the mm10 build were downloaded 
from the Mouse Genomes Project46,71,72. Trimmed WGS reads were 
mapped, matefixed and duplicates marked and filtered as above. Reads 
were then split using the SNPsplit command with the –conflicted and 
–paired flags.

Mutation calling and filtering
A Strelka2 (ref. 73) pipeline was used to call mutations from WGS reads 
in both PF1 samples and F1 tumors. F1 tumors used the SNPsplit refer-
ence above, whereas PF1 cells used the standard mm10 reference. 
Manta was first run on both tumor/normal and cell line/UV treated 
cells to flag structural variants before Strelka2 mutation calling. Both 
Strelka2 and Manta used default parameters. Mutations were originally 
processed with bcftools69 for the PASS flag, and then the GATK74 Calcu-
lateSNVMetrics walker was used to further filter mutations. Mutations 
were removed if:

VariantAlleleCount < 4, VariantAlleleCountControl > 1, 
VariantMapQualMedian < 40, MapQualDiffMedian < −5.0, Map-
QualDiffMedian > 5.0, LowMapQual > 0.05, VariantBaseQualMe-
dian < 30, (VariantAlleleCount >= 7 & VariantStrandBias < 0.05 & 
ReferenceStrandBias >= 0.2), DistanceToAlignmentEndMedian < 10, 
DistanceToAlignmentEndMAD < 3

For F1 tumors, mutations overlapping germline SNPs were also 
removed from the analysis.

PF1 ATAC-seq data processing
Aligned ATAC reads were used as input for MACS2 (ref. 75) to call peaks 
with the flags -f BAMPE -g mm –nomodel –nolambda –keep-dup-all 
–call-summits -B -q 0.01. Peaks from individual replicates were con-
verted to GRanges objects in the R environment and merged using the 
reduce function of the GenomicRanges76 package v1.52.1. Read counts 
within merged peaks were calculated using the qCount function of the 
QuasR77 package v1.40.1.

PF1 RNA-seq data processing and analysis
Transcript abundances were quantified using Kallisto78 v0.46.0 with the 
–bias and –rf-stranded flags and the Gencode M25 transcript release. 
To assign tags per million to a single gene instance, transcripts were 
split based on shared Entrez gene ID. Gene IDs with transcripts on more 
than one chromosome, transcripts on both strands, transcripts with no 
Entrez gene ID or overlapping genes with the same alias were removed. 
To determine a gene model, ATAC signal was calculated within a 1.5-kb 
window around each annotated TSS (−1,000, +500). Gene starts were 
selected from the transcript with maximum ATAC signal, or in the 
case of no-expression, the longest isoform was used. All transcripts 
from an Entrez gene ID with unique signal from quantification with 
Kallisto were summed, and the end of the gene model determined by 
the longest transcript with quantified reads. To bin genes based on 
transcription level, genes were first filtered to be at least 1 kb long and 
1 kb away from the nearest neighbor to prevent confounding signals 
from repetitive small genes and genes in direct proximity, resulting in 
19,091 genes total. A pseudocount of 0.1 was added to the mean TPM 
of each gene and log2 converted. Genes with a value of 0 or below were 
designated as bin 1 and represented 10,657 genes. The remaining 8,434 
‘expressed’ genes were binned into three quantiles, resulting in 2,812, 
2,811 and 2,811 genes in bins 2, 3 and 4, respectively. To visualize RNA 
reads (Fig. 4a), RNA was aligned to the mm10 reference using STAR79 
2.7.10b and the ENCODE parameters specified in the STAR manual.

HEK293 Flag-OGG1 ChIP and total RNA-seq processing and 
analysis
Published Flag-OGG1 ChIP41 and Ribo-Zero total RNA80 data were 
downloaded from GEO accession numbers GSE89017 and GSE76496, 
respectively, and trimmed with TrimGalore. RNA was mapped to 
the T2T-CHM13 version 2.0 (ref. 81) reference using STAR79 as above, 
whereas Flag-OGG1 data was mapped using bowtie2 (ref. 68) version 
2.3.5.1 and unique reads were retained. A GFF3 RefSeq file was down-
loaded from the UCSC genome browser, and genes were filtered to 
have gene_biotype = ‘protein coding’ and extra_copy_number = ’0’, 
resulting in 19,776 genes. To avoid neighboring interference and noise 
from very small gene bodies, genes were further filtered to be at least 
5 kb in genomic length and at least 5 kb away from the nearest neighbor-
ing gene (5 kb profile flanks +1 kb buffer), resulting in 13,766 filtered 
genes. Tags per million (TPM) were tallied for each gene, and genes with 
greater than 0 TPM were quantile binned, resulting in four bins of 4,094 
for nontranscribed or very low transcribed genes and 3,224 genes each 
for low, medium and high categories. Each gene body was divided into 
100 equal tiles using the tileGenome function of the GenomicRanges 
package, and each 5-kb flank was divided into 10 tiles of 500 bp each. 
Reads per kilobase were tallied for each tile. Mean log2(counts) for each 
tile in a respective genomic bin was calculated to produce metaplots 
of signal (Extended Data Fig. 4h).

Multiallelic analysis
Tandem mutations were identified using the GenomicRanges distan-
ceToNearest function, selecting those with an intermutation distance 
of 0. To calculate VAFs for each base in a tandem mutation, reads were 
extracted from the relevant PF1 genome using Rsamtools82 v2.12.0, 
whereby each read in the calculation had sequence information for both 
bases. Mutliallelic sites were selected on the criteria that two alternative 
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alleles with at least 3 unique reads with information at both bases were 
present. To determine mutation order, alleles at each multiallelic site 
were ordered based on VAF, with the higher VAF allele assumed to be 
the first mutation at that site. To confirm VAF bias for the second C in 
tandem CC > TT mutations, we used a grepping approach. For each 
multiallelic site, we used 10 bp of sequence on each side of the tandem 
site (22-base-long sequence as query) for all possible alleles and their 
reverse complement (8 in total per multiallelic site). To compare with 
the alignment data, we filtered sites where one of the alternate alleles 
had an exact match to another 22 bp sequence in the genome. We fur-
ther filtered for regions with 0 matches that occurred because of single 
base pair changes in the genome that precluded an exact string match-
ing event. In total this resulted in 237 tandem CC > TT mutations to com-
pare VAFs for each base in the tandem mutation (Extended Data Fig. 3).

RL20 metric
The rl20 metric was carried out as previously described14. In short, run 
lengths of relevant mutations (eg, C > T or G > A for UV) were calculated 
on a chromosomal basis using the rle (run length encoding) function 
in R and runs were ordered by decreasing size. The smallest run length 
in the top 20% of this list was set as the run length for that particular 
genome and informative mutation type. The significance of seeing such 
a run length given equal probability of either mutation orientation was 
calculated using a two-sided Wald-Wolfowitz runs test with the runs.
tests function in the R package randtests83 v1.0.1.

Mutational phasing
To compare mutational phasing between samples, the genome was 
tiled into sliding 10-Mb bins with a 100-kb step using the Genomi-
cRanges76 slidingWindows function. Bins with 95% mappability were 
retained, as determined using the function mappabilityCalc in the 
Repitools84 v1.46.0 R package. Overlapping mutations of either 
stranded-orientation, for example C > T and G > A with UV, were 
assigned a 1 or −1 respectively. The average of this number for each 
bin represented the phasing of that bin.

To simulate a mutation phasing distribution assuming a lesion 
segregation phenotype with these bins, we created three sets of Ber-
noulli trials in a 1:2:1 proportion. Using UV as an example, these sets 
represented C > T phased segments, mixed segments and G > A phased 
segments, respectively (Extended Data Fig. 5). Each mutation within 
the bin was thus a trial, while bins represented sets of trials. The 1:2:1 
proportion was used as the expected ratio under the Hardy-Weinberg85 
assumption, given each mitotic sister inherits the mutation result of 
two strands non-selectively in mitosis. We next set C > T mutations as a 
success while G > A mutations were a failure. The probability of success 
in mixed bins of the genome was thus set to 50%, resulting in an equal 
representation of both mutation types.

For phased bins, under perfect circumstances in the framework of 
this model it would be assumed the probability of success is 100% in a 
C > T phased segment, and 0 in a G > A phased segment. This accuracy 
was not reflected in the genome, as even in phased segments of F1 
resolved genomes and the singular X chromosome, roughly 5% muta-
tions are out of phase (Extended Data Fig. 6).

To calculate the out-of-phase rate in our PF1 cell line data, we 
focused on the mutations shared between mitotic sister cells at the 
time of penning. Our reasoning was that while C > A mutations made 
up the majority of the population, on average 31% of this number were 
C > T or G > A and thus indistinguishable from true UV mutations. This 
meant that given the number of sister-specific ROS mutations, between 
5% and 16% of this number are false positive UV mutations (Extended 
Data Fig. 5). Probability of success was adjusted to reflect this fact. 
More specifically, if 12% of C > T mutations in a particular genome are 
assumed to be background, the probability of success was shifted by 
6% as these ‘false positive’ UV mutations would be assumed to be incor-
rectly phased half the time.

For a 10-Mb bin to be considered in the model, at least 10 mutations 
needed to be present in that bin, which equated to 13,971 bins for UV and 
16,337 bins for ROS. To create an exhaustive population of these seg-
ments and establish an ideal distribution, we carried out 100 fold more 
Bernoulli trials than were present in all 14 genomes, which equated to 
139k for UV and 163 K for ROS. This number was chosen as it is two orders 
of magnitude larger than the actual population. We also carried out a 
set of trials with the same amount of data points actually represented in 
the data (13.9k and 16.3k), to directly compare the distributions quali-
tatively and subsequently with a qq-plot of the resulting distributions.

SCE
To delineate mutations specific to the recombined strand, we first iden-
tified the phased and unphased segments on each side of an SCE site. 
This was done by taking the absolute value of the skew, which scaled 
from −1 to 1. The mixed segment was determined as the smaller absolute 
value of skew. After identifying the skewed segment, we identified the 
polarity of the adjacent segment by asking if the skew was greater or less 
than 0, in the case of UV meaning it was either a C > T or G > A phased 
segment respectively. Finally, mutations in the mixed segment with the 
opposite orientation of the adjacent skewed segment were identified 
as recombined strand mutations. In contrast, mutations in the mixed 
segment with the same polarity as the adjacent skewed segment were 
noted as non-recombined strand mutations.

To profile mutation density for both strands and the mixed regions 
around SCE sites, a 1-Mb sliding window approach with 100-kb step size 
was used as above, covering in total 20 Mb centered on the SCE site. Muta-
tion rate was reported as the number of mutations/megabase (mu/Mb).

Mutation rate calculation
Mutation rates were calculated as previously reported14. To account for 
genomic representation in mutation rate, each mutation type (ie, C > T) 
in addition to bases immediately adjacent to the mutation site were 
first summed, creating a trinucleotide vector of 192 unique mutation 
instances. This was folded into a vector of 64 unique mutations by com-
bining identical trinucleotide contexts, where only a different alternate 
base was observed. The number of trinucleotide mutation instances 
was then divided by the total number of possible trinucleotides in that 
window. The weighted mean of this number for all trinucleotides was 
then calculated, with the weights being the relative representation of 
that specific trinucleotide in either the window of interest or the whole 
genome, depending on the comparison. This number was then multi-
plied by 106 to represent mutations/megabase. For mutation specific 
rates such as UV and ROS, the same was applied but trinucleotides and 
identities were subsetted to only reflect these mutation types.

Mutation signatures
To identify mutation signatures, trinucleotide sequences centered on 
each mutation were first reverse complemented if the reference base 
was either A or G. This created a vector of length 96, representing all 
mutations in the context of either a C or T reference base. The number 
of that mutation type was divided by the total mutations for that sample 
to depict a frequency of each mutation identity in the population. To 
compare our observed mutation signatures to previously identified 
ones, we downloaded SBS signatures from the COSMIC database ver-
sion 3.2 for the mouse genome reference GRCm38. This consisted of 79 
total signatures, 19 of which were filtered out given evidence of possible 
sequencing artefacts. Using our frequency scaled signatures defined 
above, we compared the cosine similarity of the 96 length vectors for 
each sequenced genome to the 60 filtered COSMIC signatures using 
the cosine function in the lsa86 package.

Transcription-coupled repair analysis
To compare mutation rates to transcription output we used the gene 
models and bins defined above. In the case of UV mutations, template 
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strand damage was determined as a C > T mutation in minus strand 
genes and a G > A mutation in plus strand genes. Conversely, C > T muta-
tions in plus-strand genes and G > A mutations in minus strand genes 
were defined as non-template mutations. The same logic was applied 
to ROS mutations, meaning G > T mutations on minus-strand genes and 
C > A mutations on plus strand genes were determined to be template 
mutations. The inverse again were designated as non-template muta-
tions. Mutation rates were calculated as above, with mean weights 
calculated using the trinucleotide representation of the whole genome. 
Stranded mutation rates were multiplied by 2 and then divided by the 
genome average, to represent rate relative to the genome.

R programming environment
Analyses in the R programming language were performed in Rstudio87  
using R88 v4.3.0. Additional packages used in analysis and visualiza-
tion not explicitly cited in the text include RcolorBrewer89 v1.1–3, 
pheatmap90 v.1.0.12, NMF91 v.0.26, TxDb.Mmusculus.UCSC.mm10.
knownGene92 v3.10.0, BSgenome.Mmusculus.UCSC.mm10 v1.4.3, 
rtracklayer93 v1.60.0, ggplot2 (ref. 94) v3.4.4, vcfR95 v1.14.0, scales96 
v1.2.1, regioneR97 v1.32.0, Gviz98 v1.44.2, bsub v1.1.2, viridis99 v0.6.4, 
QuasR77 v1.40.1, maptools100 v1.1–8, apcluster101 v1.4.11, mixtools102 
v2.0.0 and lsa86 v0.73.3.

Statistics and reproducibility
No statistical method was used to predetermine sample size and 
no data were excluded from the analysis. The experiments were not 
randomized and the investigators were not blinded to allocation 
during experiments and outcome assessment. Pearson’s median 
skewness coefficient was calculated from each VAF distribution in R 
as (3×(mean-median))/standard deviation. Additional statistical tests 
and calculations are as described in the relevant Methods sections or 
figure legends.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Fastq files for the WGS, RNA-seq and ATAC-seq data produced for this 
paper can be downloaded from Sequence Read Archive under the acces-
sion number PRJNA934746. Processed files, including mutation calls, 
TPM counts and ATAC peaks used in the analysis, have been deposited in 
GEO under the accession GSE230579. HEK293 Flag-OGG1 ChIP-seq data 
were downloaded from the GEO accession GSE89017, whereas HEK293 
Ribo-Zero total RNA data were obtained from GEO accession GSE76496.

Code availability
R scripts to reproduce all main figure panels can be downloaded from 
GitHub (https://github.com/odomlab2/Single-Mitosis-LSE)103 with 
https://doi.org/10.5281/zenodo.10786189 (ref. 104).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Genomic stability and cell cycle determination in 
the PF1 line. a, Divisions per day on the Phenomex instrument and in cell 
culture. Rates for cells split after a single mitosis are noted. Numbers above 
boxes represent the total number of rates measured, for Phenomex this reflects 
pens, for incubator cells it is individual wells. Red numbers represent the mean 
doubling time in hours. Boxplot elements are as described in Fig. 3c, albeit 
without notches. Proliferation measurements from the Phenomex platform were 
taken on cells that proliferated post UV treatment. b, Copy Number analysis, 
showing diploid content for most of the genome. Reads were counted in 10 kb 
bins, and the y axis represents log2(distance to mean across all bins). Red vertical 
lines demarcate chromosome boundaries, and green horizontal lines represent 
counts expected for a single copy number gain or loss. c, Top: DNA content  
(x axis = Hoechst intensity) as a function of green and red fluorescence. Histogram 
bins have been colored by scaled log2(red/green) for each cell. Bottom: FUCCI 
fluorophores imaging over time. 357 cells on one chip were affinity propagation 

clustered based on FUCCI across all 6 timepoints. Color scale is noted above and 
is identical to the Hoechst histogram color scheme. Doubling time point (DT) 
is indicated by the second annotation column scaling from early replicating 
timepoints (gray) to later replication timepoints (dark blue). Timepoints are 
3 hour intervals and noted below each column. d, Fluorophore signal per cell 
cycle and theoretical effect of ploidy on mutation patterns for pulse mutagenesis 
(UV). Cells in S-phase would have intermittent lesion segregation patterns, while 
cells with duplicated DNA (G2/M) would not show lesion segregation patterns 
after a single mitosis. e, Scatter of scaled G1 (red) and G2/M (green) signal directly 
after penning for 1120 cells measured on the Phenomex platform. Cells to split 
are indicated by the white dashed box. f, Gating Live cells with FSC-area by 
SSC-area. g, Singlet determination by FSC-area by FSC-height. h, Fluorophore 
intensity for G1 fluorophore (FITC) and G2/M fluorophore (yellow-green laser) 
as measured by FACs. White box denotes FITC positive cells that were single-cell 
sorted to establish the PF1 line.
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Extended Data Fig. 2 | UV treatment, mutation signature determination 
and QC of WGS data. a, Determination of UV treatment intensity and effect 
on viability 3 days post exposure. Intensity used to induce UV mutations is 
denoted by the red dashed box. Y axis represents viable cells, X axis represents 
UV intensity in nanojoules/cm². b, Cosine similarity between sister-unique 
mutations and 60 annotated SBS signatures in the COSMIC database. The four 
signatures attributed to UV damage are noted by the row annotation in red. 
Mitotic sister pairs are noted by the column annotation at the top of the heatmap. 
c, Same as in C but for mutations shared between mitotic sisters. ROS signature 
is noted by the annotation row in blue. d, Distribution of VAF for all mutations 
across all sisters. e, Heatmap displaying the number of overlapping mutations 

between clones (see Fig. 2c, bottom), sister-shared mutations are grayed out 
to demonstrate clonal sharing. Chip annotation bar depicts two independent 
Phenomex chips (independent splitting experiments). Sister pair color 
annotations are as shown in b and c. Sisters with higher clonal mutation overlap 
stem from two individual clones from a single splitting experiment. f, Similarity 
of mutation signatures to UV (SBS7a, red) and ROS (SBS18). Each pair of box plots 
represents the similarity of all 14 individual sisters to the respective signature 
when all mutations are considered (light red and light blue) or only mutations 
unique to that sister (dark red and dark blue). Boxplot elements are as described 
in Fig. 3c, albeit without notches.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Unrepaired UV lesions can create multiallelic 
variation. a, Barplot of counts for all tandem mutation identities (929 total dual 
mutations, 94 total categories). Red bars represent reference alleles where two 
pyrimidines are adjacent to each other (ie, CC, CT, etc.) while gray bars represent 
purine/pyrimidine hybrids (ex CG). Canonical CC > TT UV mutations, and its 
reverse complement are noted (373 in total). b, Scatterplot depicting number of 
times an allele was seen at a tandem mutation, and the average VAF for that allele 
when it is detected. c, Same as in (b) but only for multiallelic tandem mutations. 
d, Comparison of VAFs for each cytosine in a tandem mutation, calculated from 
reads where information for both bases is contained. Note how the 3’ CC is 
more likely to be a mutation seen in multiallelic UV sites. 237 of the 373 sites are 
represented after filtering for dual mutations that can be interrogated using the 
string searching approach (see Methods). e, The same as in (d), but instead of 
using alignment information directly, sequences representing each UV mutation 

allele were detected by string searching raw sequences in the corresponding 
genome (see Methods). f, Scatterplot of VAFs calculated from alignments (d) with 
VAFs calculated from string searching sequences from raw data (e).  
g, Same as in (f), except the identity of sequences for VAFs calculated from string 
searching (Y axis in f) have been scrambled to depict no relationship. h, Sequence 
context surrounding CC dual mutations. Surrounding base identities have 
been converted to proportions. The identity of each base is shown in the key at 
bottom. The heatmap between any two bar plots displays the -log10(Benjamini-
Hochberg adjusted p-value) from a Fisher’s exact test between base counts at 
the position (two-sided alternative hypothesis). Positions with a p-value below 
0.005 are noted by ‘**’. (top) The average of 100 random sampling events of 111 
CC dinucleotides in the mouse genome. (middle) Identities of surrounding bases 
for all multiallelic sites (n = 111). (bottom) Identities of surrounding bases for all 
biallelic sites (n = 272).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Transcriptome and accessibility profiling in the PF1 
cell line. a, Number of unique reads mapped (in millions) per library for triplicate 
total RNA-seq replicates. b, Pairwise scatters of RNA measurements for all 
annotated mouse genes. Values are shown as log2(TPM + 0.01). Upper panels 
represent the Pearson correlation coefficient for the respective scatter. c, Same 
as in A but for unique reads in triplicate ATAC-seq samples. d, Pairwise scatter of 
reads in merged peaks across 3 ATAC-seq replicates. Axes represent log2(reads 
per kb + 1). e, Heatmap of ATAC-seq counts in a 10 kb window surrounding 
transcription start sites. Rows are ordered by TPM from RNA-seq data in (a), 
and represented as the annotation column to the left of the heatmap. f, Upper: 
stripchart of template (black points) and non-template (gray points) mutation 
rates divided by the total genic mutation rate for all 14 genomes. Point clusters 
represent genic bins as described in Fig. 4. From left to right, ROS mutations 

unique to each sister cell (14 points per bin), ROS mutations shared between 
sisters (7 points per bin), and UV mutations (14 points per bin). Lower: Boxplot 
of template - non-template rate for all 14 genomes, considering the mutations 
as for the stripchart panels above. Boxplot elements are as in Fig. 3c without 
notches. g, Average ATAC signal over gene bodies. Genes at least 5 kb in length 
were first binned based on TPM from low (1, light blue) to high (4, dark blue), 
and additionally 2500 coordinate shuffled gene positions (gray) were taken as a 
negative control. Gene bodies were divided into 100 tiles. Additionally, a window 
of 5 kb was added flanking the TSS and TTS. Reads were counted in all genic tiles, 
summed by genic bin, and scaled to reads per kb of genomic representation.  
h, Genic signal for Flag-OGG1 ChIP data in HEK293 cells42. Transcriptional binning 
and gene body tiling were performed as in panel (g), and numbers of genes per 
bin are shown as in (g).
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Extended Data Fig. 5 | Mutational phasing for UV damage in mitotic sisters. 
a, Mutation density for UV (upper) and ROS (lower) across all chromosomes. 
Heatmaps represent 10 mb sliding genomic windows with a 1 megabase step. 
Mutation density in windows is represented as mutations per 10 mb window. 
Each row is a single sister genome and rows are sorted by total UV mutation 
counts from highest to lowest. b, rl20 analysis (see Methods) as in Fig. 4a, but 
distinguishing between ROS mutations shared between mitotic sisters at time 
point 0 (dark blue) and ROS mutations unique to each individual sister, acquired 
after the first division (light blue). Red dots represent UV mutations. The y axis 
depicts the longest set of runs for a single mutation type, accounting for 20% 
of all informative mutations. The x axis is the significance in -log10(p-value) for 
seeing such a run length given random assignment to strands, calculated using 
a two-sided Wald-Wolfowitz runs test. c, Schematic depicting determination 
of background C > T mutation when modeling phasing for UV damage using 

Bernoulli trials. Upper box: Cells accumulate Non-UV C > T mutations in culture 
(yellow bars with red border) before UV damage. The ratio of C > T/ C > A for all 
7 sister pairs is shown in the boxplot inset (Boxplot elements are as described in 
Fig. 3c, albeit without notches), and the average is ~ 0.3. Lower box: Total C > A 
mutation counts unique to each sister is multiplied by 0.3 to estimate the amount 
of total background C > T mutations (overlaid yellow bars). This background 
C > T estimate is then divided by the total C > T mutation counts to estimate 
the error adjustment for phased Bernoulli trials, which has a mean of 11.8% and 
ranges from 5% to 16% depending on UV total mutations. d, Error rate is used  
to adjust success or failure probability for completely phased segments.  
An example error rate of 12% is shown, whereby each phased segment probability  
is adjusted by 6%, as half of these background mutations will be randomly  
out of phase.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Acute, single pulse damage reveals asymmetric lesion 
segregation patterns between mitotic sisters. a, Segmented heatmap for UV 
(upper) and ROS (lower) induced mutations for 7 pairs of mitotic sisters. Model 
of mutation phasing for a single burst event (UV, upper right) that results in a 
lesion segregation phenotype, as opposed to chronic, low mutation rate (ROS, 
lower right). b, Plot of UV mutations with reference C bases in the upper and 
reference G bases in the lower halves respectively. Lightly colored background 
(yellow/blue/gray) represents segmentation of the genome based on phasing. 

Switches in segmentation from a mixed segment to a phased segment represent 
sister chromatid exchange events. The SCE (brown) and non-SCE (salmon) strand 
mutations can be inferred in mixed regions neighboring SCE sites. c, Metaplot of 
UV mutation density surrounding SCE sites. Shown are smoothed mutation rates/
megabase for 1 mb sliding windows with a 100 kb step size. Actual UV mutation 
density around SCE sites shown in black, while random selection of an equal 
number of mutations from other clones shown in red.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Haplotype resolved lesion segregation in F1 mice. 
a, Percentage of mapped reads to a specific genome. Each bar represents a 
tumor where brown depicts Mus castaneus specific reads and gold C3H. Mean 
haplotype-specific reads for all 6 libraries is denoted by the vertical dashed line. 
Colored boxes on the left denote which mouse the tumor was isolated from. 
b, Chromosome specific mapping rate for one of the tumors in (a). Note Mus 
castaneus specific mapping to the X. c, Read coverage per mutation in each 
library. Horizontal red dashed line represents 20x coverage. Colored boxes below 
denote mouse of origin as in (a). Boxplot elements are as described in Fig. 3c.  
d, Number of mutations per tumor. Colors and symbols as in panel (a). e, Genomic 
stability of F1 tumors. Read counts in 10 kb windows for a representative tumor. 
Y axis represents log2 counts subtracted from the mean of all bins. Horizontal 
green line represents no difference, while horizontal red lines depict duplication 
or haploid content. f, Percent of out-of-phase mutations. The proportion of 
mutations with a reference T or A base was calculated within changepoint derived 
segments (see Methods). In the haplotype-agnostic analysis (gray points), out 
of phase represents the mean amount of mutations with an identity opposite 
to its segment. As an example, mutations at A bases when mutations within the 

segment are predominantly at T bases (n = 6 tumor genomes). For segments to be 
considered ‘phased’ in the haplotype-agnostic analysis, at least 80% of mutations 
in that segment had to be of a single type. Haplotype resolved whole-genome 
mutations with opposing identity are shown in red (n = 12, 6 genomes with 2 
alleles each), and X chromosome localized mutations in black (n = 6). Horizontal 
lines represent the mean of each set of points. g, Left: Correlation between  
T < > A phasing and C < > G phasing in a single tumor within 10 mb windows.  
C and T mutations (as well as G and A) share phase within a single tumor. Right: 
comparison between T < > A phasing in tumor 2 to C < > G phasing in tumor 1. 
h, Comparison of T < > A phasing across all 6 tumors, as measured by Pearson 
correlation for phasing in 10 mb bins. i, Boxplot of correlation of T < > A phasing 
between all non-self correlations (n = 15) as in (h), as well as random expectation 
of phasing correlation seen after mixing bins for all 6 tumors (n = 15). The 
solid middle line represents the median, the gray box depicts the interquartile 
range between the 1st and 3rd quartile, while the whiskers define the minima and 
maxima. Outliers are shown as points. j, Heatmap of T < > A phasing (x axis) with 
C < > G phasing (y axis) between and within tumors. Mouse of origin are colored 
as in (a).
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code
Policy information about availability of computer code

Data collection Data was collected using Illumina NovaSeq 6000 and NextSeq 2000 platforms

Data analysis R scripts to reproduce all main figure panels can be downloaded from GitHub (https://github.com/odomlab2/Single-Mitosis-LSE) with DOI 
10.5281/zenodo.10786189. 
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Fastq files for the WGS, RNA and ATAC-seq described here can be downloaded from Sequence Read Archive (SRA) under the accession number PRJNA934746. 
Processed files including mutation calls, TPM counts and ATAC peaks used in the analysis have been deposited in GEO under the accession GSE230579.  
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Sample size A minimum of 5 pairs was desired to assess reproducibility and increase total mutation numbers to study. 7 replicates were conducted in case 
some samples were problematic. No specific calculation was performed for mouse tumour selection. Instead, we sought to investigate 3 
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unique tumours from 2 independent mice (6 in total) to ascertain haplotype resolution reproducibility between both tumours and mice.

Data exclusions No data were excluded.

Replication General mutation patterns were interrogated across all replicates, both in cell culture and tumours, and each figure displays points for each 
replicate for the corresponding contrast. 

Randomization Randomization of sister pairs and mice was not relevant as this is not a case-controlled study.

Blinding Blinding was not relevant as these experiments were not a case-controlled study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
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Plants

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) P388D1 cells from ATCC and Lentix HEK293T 

Authentication No authentication was carried out.

Mycoplasma contamination Cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines was used in this study.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Inbred female Mus musculus castaneus (CAST/EiJ) mice were crossed with inbred male C3H/HeOuJ (C3H) mice. The F1 offspring were 
treated with a single intraperitoneal dose of N-Nitrosodiethylamine (DEN; Sigma-Aldrich N0258; 20 mg/kg body weight) at P15. Liver 
tumours were isolated 30 weeks after treatment and stored at -80°C for DNA extraction and sequencing. Liver tissue from an 
untreated P15 litter mate was sampled for control experiments. Control samples (liver tissue) were also collected from untreated, 
age-matched littermates. Animals were maintained using standard husbandry: mice were group housed in Tecniplast GM500 IVC 
cages at room temperature/humidity with a 12 h:12 h light:dark cycle and ad libitum access to water, food (LabDiet 5058), and 
environmental enrichments. 

Wild animals This study did not use wild animals.

Reporting on sex Only males were used, as females are relatively resistant to DEN induced tumorigenesis. 

Field-collected samples This study did not use field collected samples.

Ethics oversight Animal experimentation was carried out in accordance with the Animals (Scientific Procedures) Act 1986 (United Kingdom) and with 
the approval of the Cancer Research UK Cambridge Institute Animal Welfare and Ethical Review Body (AWERB).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation To ascertain DNA content, 2 drops of Hoechst 33342 Ready Flow™ Reagent from Invitrogen™ was added to 2 x 106 cells and 
placed in the incubator for 15 minutes. Cells were spun down, resuspended in Miltenyi Biotec FACs buffer and assayed using 
the BD FACSAria™ Fusion 3 system. Green fluorophores were ascertained with excitation at 488 nM and emission at 530 nM, 
while the orange fluorophore of G1 cells was excited at 561 nM and emission recorded at 586 nM.

Instrument BD FACSAria Fusion 3

Software BD FACSDiva software 8.0.2

Cell population abundance Histogram of Hoechst staining of DNA content in supplemental figure 1c shows all signal for gated cells as depicted in 
supplemental gating figure. For single cell sorting to create the PF1 clone, positive Green fluorescence using signal as 
depicted in the supplemental gating figure was used.

Gating strategy Live cells were determined by FSC-A and SSC-A, and singlets gated with FSC-A and FSC-H. Cells with positive emission in the 
530/30 after excitation with a blue laser at 488nM were sorted as singlets for clonal selection.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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