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BANKSY unifies cell typing and tissue  
domain segmentation for scalable spatial 
omics data analysis

Vipul Singhal    1,13, Nigel Chou    1,13, Joseph Lee    2, Yifei Yue3, Jinyue Liu    1, 
Wan Kee Chock    1, Li Lin4, Yun-Ching Chang5, Erica Mei Ling Teo5, 
Jonathan Aow    1, Hwee Kuan Lee4,6,7,8,9,10, Kok Hao Chen    1   & 
Shyam Prabhakar    1,11,12 

Spatial omics data are clustered to define both cell types and tissue 
domains. We present Building Aggregates with a Neighborhood Kernel 
and Spatial Yardstick (BANKSY), an algorithm that unifies these two spatial 
clustering problems by embedding cells in a product space of their own 
and the local neighborhood transcriptome, representing cell state and 
microenvironment, respectively. BANKSY’s spatial feature augmentation 
strategy improved performance on both tasks when tested on diverse 
RNA (imaging, sequencing) and protein (imaging) datasets. BANKSY 
revealed unexpected niche-dependent cell states in the mouse brain and 
outperformed competing methods on domain segmentation and cell 
typing benchmarks. BANKSY can also be used for quality control of spatial 
transcriptomics data and for spatially aware batch effect correction. 
Importantly, it is substantially faster and more scalable than existing 
methods, enabling the processing of millions of cell datasets. In summary, 
BANKSY provides an accurate, biologically motivated, scalable and versatile 
framework for analyzing spatially resolved omics data.

A fundamental property of solid tissues is the arrangement of individual 
cell types in stereotypical spatial patterns. Spatial omics technolo-
gies now facilitate the study of tissue structure by revealing both the 
spatial locations and molecular profiles of cells. These technologies 
provide highly multiplexed transcriptomic, genomic or proteomic 

profiles at up to single-cell resolution, together with their locations 
(for example, multiplexed fluorescence in situ hybridization (FISH)1–3, 
Slide-seq4, Slide-DNA-seq5, multiplexed ion beam imaging by time of 
flight6, CosMx7, CODEX8), and thus provide unprecedented insights 
into cellular states, functions and interactions within the tissue context.
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cells to fall into distinct clusters (Supplementary Section 1 and Supple-
mentary Fig. 1), even when they have identical transcriptomes. A more 
intuitive approach is to instead append some representation of the cell’s 
microenvironment. BANKSY uses the mean neighborhood expression 
and the AGF (Fig. 1a,b) to represent the transcriptomic microenvironment 
around each cell. Importantly, the AGF (Fig. 1b), which can be thought of 
as measuring the gradient of gene expression in each cell’s neighborhood, 
is invariant to sample rotation. Next, these additional features are used 
to embed cells in a neighbor-augmented product space (Methods, ‘The 
BANKSY algorithm’, Fig. 1c and Extended Data Fig. 1a). After dimensional-
ity reduction, followed by graph construction in the resulting embedding 
space, clustering can be performed using any graph partitioning algo-
rithm. By default, BANKSY uses the Leiden community detection algo-
rithm33 for its speed and scalability, although other methods (Louvain,  
model-based clustering, and k-means) are also provided as options.

To control the relative contribution of a cell’s own and neighbor  
features to cell–cell distances in the embedding, BANKSY uses a 
mixing parameter, λ ∈ [0, 1], to weight the contributions of the 
cell-transcriptome matrix and the neighbor expression matrices  
(mean and AGF; Fig. 1 and Extended Data Fig. 1b). Smaller λ settings 
emphasize cells’ own transcriptomes and thus cause cells to cluster 
according to cell type. In the limit, when λ = 0, BANKSY reduces to 
conventional nonspatial clustering. BANKSY can be switched from 
cell-type clustering mode to domain segmentation mode by increasing 
λ, which increases the influence of the neighborhood signature and 
causes cells to cluster according to tissue domain.

We applied BANKSY to multiple datasets across diverse spatial 
transcriptomic technologies and evaluated performance both qualita-
tively and quantitatively. One qualitative evaluation strategy involves 
showing that the spatial algorithm outperforms nonspatial methods 
at finding expected spatial patterns corresponding to anatomical 
structures9,10,23,25,38. We adopted this strategy in Figs. 2, 3g–j and 5. 
Another qualitative strategy11,12,23 is to show that the method discovers 
previously undescribed biological features not detected by competing 
methods. This strategy was used in Figs. 3a–f and 4, and in Extended 
Data Fig. 2. Finally, the quantitative approach11,23,25 involves quantify-
ing the performance of competing algorithms at recapitulating a set 
of externally defined cell type or tissue domain labels. We used this 
strategy in Fig. 5 and in Extended Data Fig. 3. For all analyses, we ran 
BANKSY using default settings (Methods, ‘Default settings for BANKSY 
embedding and clustering’).

BANKSY improves the cell-type clustering of Slide-seq data
To evaluate cell-type clustering accuracy on spatially structured 
data, we applied BANKSY to mouse cerebellum data generated using 
Slide-seq v.1 and v.2 (refs. 4,39). Although both versions of Slide-seq 
have cellular resolution (10 μm), the spots do not coincide exactly 
with the cell locations. Consequently, we expected some degree of 
contamination from the transcriptomes of immediately adjacent cells. 
This degrades the performance of unsupervised clustering approaches 
and has motivated deconvolution techniques, such as robust cell type 
decomposition (RCTD)40, which use reference scRNA-seq data to infer 
cell type composition within each spot. We reasoned that we could use 
BANKSY’s neighbor-augmented embedding to more accurately cluster 
these Slide-seq datasets, even in the absence of a reference dataset.

On both datasets, BANKSY delineated the granular layer, the 
Purkinje neurons and the molecular layer interneurons (MLIs) more 
accurately than conventional nonspatial (BANKSY with λ = 0) clustering 
(Fig. 2a,b and Supplementary Figs. 2–7). It identified eight clusters in 
the Slide-seq v.2 dataset, corresponding to eight of the cell types identi-
fied using RCTD (Supplementary Figs. 2, 3, 8 and 9), in contrast to the 
six such clusters identified using nonspatial clustering. To quantify the 
contiguity of the spots within each layer-specific cluster, we defined a 
normalized cross-connectivity (NCC) score between each pair of cell 
types, where a higher score indicates greater intermingling (Fig. 2c). 

One of the primary spatial omics data analysis tasks is to clus-
ter cells into distinct cell types or subtypes. Because a cell’s state is 
influenced by interactions with other cells, it would be informative 
to cluster cells using their own transcriptomes as well as their spatial 
relationships. However, previous spatial omics studies have mostly 
used clustering algorithms designed for single-cell RNA sequencing 
(scRNA-seq) data, which ignore spatial information2,3,9. It is thus impor-
tant to develop formalisms for spatially informed cell-type clustering.

Recently, three spatially informed algorithms were proposed for 
cell-type clustering10–12. However, these tools were applied to datasets 
consisting of 10,000–100,000 cells; it is unclear if they will scale to 
larger datasets. Moreover, one of the methods12 assumes that physi-
cally distant cells are less similar to each other, even though cells of the 
same type are often far apart, for example, in the case of intercalated 
immune cells resident in tissues13, intermingled neuronal and glial 
cells in the brain14 and elongated structures, such as epithelial layers or 
blood vessels15. Furthermore, a cell type can be found in repeating, but 
spatially separated, structures such as the two cerebral hemispheres16,17 
or neuroepithelial buds within brain organoids14,18–20.

In contrast to cell-type clustering, multiple algorithms have been 
developed to identify tissue domains (for example, cortical layers 
in the mammalian brain9,21). This is a distinct algorithmic problem 
because each tissue domain could in principle include multiple cell 
types. Earlier domain segmentation methods encouraged physically 
proximal cells to have the same label (using Markov random fields 
(MRFs))22,23. This assumes that a cell’s transcriptome resembles the 
average transcriptome of cells in its tissue domain, which is not always 
valid because diverse cell types are commonly intermingled within 
a single domain. Another family of methods uses deep neural net-
works24–27, which provide flexibility in modeling but may be vulnerable 
to overfitting. Despite the variety of methods available for this task, it is 
not yet clear which paradigm is optimal for clustering transcriptomic 
data. Furthermore, as with cell-type clustering, these methods were 
largely demonstrated on small datasets. With a few exceptions28, their 
performance on larger datasets has not been explored.

To address these limitations, we introduce a biologically motivated 
strategy for combining molecular and spatial information, named 
Building Aggregates with a Neighborhood Kernel and Spatial Yardstick 
(BANKSY). BANKSY leverages the fact that a cell’s state can be more fully 
represented by considering both its own transcriptome and that of its 
local microenvironment. BANKSY uses a pair of spatial kernels to encode 
the transcriptomic texture of the microenvironment, one constructed 
using the weighted mean of gene expression in each cell’s neighborhood 
and the other using an azimuthal Gabor filter (AGF), which is related 
to plane-wave Gabor filters29–31. The advantage of this strategy for cell 
typing is that it does not require cells of the same type to be physically 
proximal. Furthermore, this allows BANKSY to solve both cell typing 
and domain segmentation within a single machine-learning framework.

BANKSY labels spatially structured cell types and subtypes with 
high accuracy and is adept at distinguishing subtly different cell sub-
types residing in distinct microenvironments. Moreover, by modifying 
a single hyperparameter, BANKSY can be used to accurately detect 
tissue domains rather than cell types. Importantly, BANKSY’s feature 
augmentation strategy allows it to leverage highly scalable graph clus-
tering algorithms that can accommodate millions of cells32,33. Finally, 
BANKSY is interoperable with the widely used bioinformatics pipelines 
Seurat (R)34, SingleCellExperiment (R)35 and SCANPY (Python)36. We 
anticipate that BANKSY’s biologically inspired approach could be fur-
ther extended, potentially forming the basis for additional algorithms. 
We note that a related strategy of using context to define the meaning 
of words has revolutionized the field of natural language processing37.

Results
One strategy for spatial clustering is to append cells’ spatial coordinates 
to their gene expression vectors9. However, this causes spatially distant 

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | March 2024 | 431–441 433

Article https://doi.org/10.1038/s41588-024-01664-3

BANKSY yielded a lower score than nonspatial clustering, confirm-
ing our visual assessment that its clusters were more contiguous. To 
quantify the accuracy of BANKSY, we used supervised RCTD40 estimates 
as a reference. In both datasets, BANKSY clusters showed greater cor-
respondence to RCTD inferences and consistency with the expression 
patterns of known markers (Fig. 2a and Supplementary Figs. 8 and 9). 
These results indicate that BANKSY enables accurate unsupervised 
clustering of Slide-seq data.

BANKSY identifies unexpected cell subtypes in spatial data
Because cell types residing in two distinct microenvironments 
may have distinct transcriptomic states, we posited that BANKSY’s 
neighbor-augmented approach might detect such subtly different 
states. We applied both nonspatial (λ = 0) clustering and BANKSY to a 
multiplexed error-robust FISH (MERFISH) mouse hypothalamus data-
set2, keeping all parameters besides λ identical. Nonspatial cluster-
ing recapitulated the previously defined cell types, including mature 
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Fig. 1 | BANKSY’s neighborhood-based feature augmentation strategy for 
clustering. a, The original gene–cell expression matrix (purple) was augmented 
with neighborhood-averaged expression matrices corresponding to the mean 
local expression (dark pink) and the AGF (light pink). Here, λ is a mixing 
parameter that controls the importance of cells’ own expression and 
neighborhood expression effects, G(r) is a radially symmetric Gaussian kernel 
that decays from magnitude 1 at r = 0, ‘expression’ refers to each gene’s 
expression level in each cell, the mean is taken over cells in the respective index 
cell’s neighborhood and the eiϕG(r) term confers gradient sensitivity to the AGF. 
b, Heatmap of the real and imaginary components of a gradient-sensitive AGF 

kernel. The plots show an unnormalized AGF kernel: the real part (cos(ϕ)) senses 
the gradient along the x axis and the imaginary part (sin(ϕ)) senses the gradient 
along the y axis. c, Simplified schematic of two distinct cell types in the 
neighbor-augmented space. The neighbor expression features, representing the 
local microenvironment, help to separate two clusters that would be difficult to 
separate based on the cells’ own expression alone. For simplicity, we show ‘pure’ 
microenvironments containing only a single cell type (cell type 1 in zone A and 
cell type 2 in zone B), although BANKSY is equally applicable to heterogeneous 
microenvironments containing mixtures of cell types (Extended Data Fig. 1).
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oligodendrocytes (MODs) (Fig. 3a,b). In contrast, BANKSY separated 
MODs into two previously undescribed spatially separated subclusters, 
one of which corresponded to densely packed cells restricted to the 
anterior commissure of the hypothalamic preoptic region (which 
we termed white matter MODs (MOD-wm)), and the other to cells 
spread throughout the rest of the preoptic region (gray matter MODs 
(MOD-gm); Fig. 3c and Supplementary Figs. 10 and 11). Differential 

expression analysis identified genes showing subtle, but coherent, 
expression differences between the two subclusters (Fig. 3d). Mbp  
and Lpar1 were upregulated in the MOD-wm cluster (red); Mlc1, Gad1, 
Cbln2 and Syt4 were upregulated in the MOD-gm cluster (orange). The 
former set and their guilt-by-association neighbors (highly correlated 
genes in matched scRNA-seq data; Methods, ‘Mouse hypothalamus 
MERFISH data’) are involved in neuronal myelination41,42, suggesting 
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clusters, see Supplementary Figs. 2 and 3). Top row, BANKSY clustering. Second 
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cluster labels (Bregma 0.16 mm and 0.26 mm, as defined in the original study). 
b, Corresponding UMAP representation of the BANKSY embedding, colored 
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to the spatially separated mature oligodendrocyte subclusters. c, Spatial maps 
of all MODs (nonspatial clustering, λ = 0) and two MOD subtypes (BANKSY): 
two z-slices (Bregma 0.26 mm and 0.16 mm). d, Heatmap of genes differentially 
expressed between the two MOD subtypes, showing MERFISH expression values 
z-scaled across the mature oligodendrocytes. e, Average expression of MOD DEGs 
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box, cycling cluster indicated in g–i. CAF, cancer-associated fibroblast.
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possible differences in myelination between MODs in the anterior com-
missure and the rest of the preoptic area. The latter set and their top 
neighbors are associated with functional and signaling roles, such 
as maintenance of synapses and ion transport43. BANKSY’s ability to 
distinguish these subpopulations arose from its use of neighborhood 
transcriptomic features, which facilitate better separation of the two 
clusters (Fig. 3e).

To corroborate the two MOD subpopulations, we clustered 
matched scRNA-seq data2 using the DEGs and guilt-by-association 
genes described above (Supplementary Fig. 12). These genes separated 
the cells into two clusters (Fig. 3f), with the two groups of markers being  
upregulated in their respective subclusters (Supplementary Fig. 12).  
Thus, the MOD subtypes identified by BANKSY are supported by  
independently generated in vivo scRNA-seq data.

Additionally, BANKSY accurately reproduced cell types and sub-
types from the original study (Supplementary Figs. 13 and 14). For 
example, BANKSY identified the ependymal monolayer in the caudal 
aspects of the third ventricle (Supplementary Fig. 14a and Supplemen-
tary Section 3) and the spatially localized excitatory and inhibitory 
neuronal subpopulations highlighted in Fig. 5a of the original study 
(Supplementary Fig. 13a).

To test BANKSY on more disordered tissue, such as neoplastic 
cancer, we analyzed a MERSCOPE human colon tumor dataset44, which 
contained 677,451 cells and was thus too large (Fig. 6) to be processed 
by other spatial clustering algorithms. BANKSY successfully resolved 
intermingled mesenchymal and immune cell types and identified 
cycling epithelial cells that could not be identified using nonspatial 
clustering (Fig. 3g–j, red arrows and Supplementary Fig. 15).

We also applied BANKSY to a spatial RNA dataset from healthy 
human colon7 (Methods, ‘Human healthy colon CosMx data’). Uniquely, 
BANKSY identified a subpopulation of macrophages (Extended Data 
Fig. 2a, black arrow) that was spatially enriched in the colorectal sub-
mucosal layer (Extended Data Fig. 2b,c). Based on the upregulation of 
known markers45,46, we annotated this population as M2 macrophages.

BANKSY distinguishes anatomically distinct cell subtypes
Next, we tested BANKSY’s cell clustering on a VeraFISH spatial transcrip-
tomics dataset centered on the hippocampus, which included parts of  
the thalamus, somatosensory cortex (SSC) and fornix. The results were 
compared to nonspatial (λ = 0) clustering, MERINGUE12, SpaGCN25 and the 
hidden MRF (HMRF) methods from Giotto38, BayesSpace23, SpiceMix11 and 
FICT10 (Fig. 4). BANKSY identified region-specific cell types with subtly 
distinct transcriptomes (Fig. 4a–s and Supplementary Figs. 16–20), along 
with spatially intermingled and dispersed cell types (Supplementary  
Fig. 17b–d and Supplementary Section 3). For example, BANKSY sep-
arated hippocampal CA3 neurons from those in the SSC (Fig. 4a and  
Supplementary Fig. 18a). We reclustered published scRNA-seq data 
from the mouse brain47 using differentially expressed genes (DEGs) 
between these two BANKSY clusters, along with their scRNA-seq 
guilt-by-association neighbor genes (Methods, ‘Mouse hippocampus 
VeraFISH data’). This analysis separated the neurons into CA3 and L5/6 
cortex (CTX) subclusters (Fig. 4t,u and Supplementary Fig. 18c)47, con-
firming that BANKSY correctly identified these known neuronal subtypes.

In contrast to BANKSY, nonspatial clustering and MERINGUE 
merged the two neuronal subtypes into a single cluster (Fig. 4b,c). 
While Giotto identified both subtypes, it failed to identify several others 
(Fig. 4d and Extended Data Fig. 4). The remaining methods variously 
merged parts of the CA1 and dentate gyrus neurons with these two 
neuronal populations (blue, green, orange and brown populations 
in Fig. 4e–h). We reproduced these findings across multiple effective 
clustering resolutions (Extended Data Figs. 4 and 5).

BANKSY also separated MODs into subtypes localized to the 
fornix and thalamic nuclei (Fig. 4j), distinguished by the expression 
of Mobp, Bcas1, Sparcl1 and Nefl (Fig. 4r and Supplementary Fig. 18b). 
To verify these subtypes, we reclustered the scRNA-seq dataset using 
the same guilt-by-association method. This analysis separated the 
oligodendrocyte cluster into subclusters whose markers matched 
those of the subtypes identified by BANKSY (Fig. 4v,w and Supple-
mentary Fig. 18d).

Nonspatial clustering and MERINGUE merged the two oligoden-
drocyte subpopulations (Fig. 4k,l). Giotto failed to identify the thalamic 
oligodendrocytes; like FICT, it generated several patchy, spatially 
disconnected clusters (Extended Data Figs. 4 and 5). While BayesSpace 
and SpaGCN separated most of the cells in these subpopulations, they 
partially merged the thalamic and fornix oligodendrocytes (Fig. 4n,p, 
green cluster).

Overall, BANKSY outperformed nonspatial clustering and existing 
spatial clustering methods at resolving cell types in known anatomical 
structures in the vicinity of the mouse hippocampus.

BANKSY accurately segments tissue domains
We quantified BANKSY’s ability to segment tissue domains by cluster-
ing spots in a Visium human dorsolateral prefrontal cortex (DLPFC) 
dataset9. This dataset, which has previously been used as ground 
truth to benchmark domain segmentation algorithms, consists of 
12 manually annotated brain sections from three individuals23,25. We 
benchmarked accuracy (Methods, ‘Human DLPFC 10x Visium data’) 
using the adjusted Rand index (ARI)9, as well as the normalized mutual 
information48 and Matthews correlation coefficient49 metrics. By all 
three metrics, BANKSY outperformed Giotto38, BayesSpace23, SpaGCN25 
and SpiceMix11 (Fig. 5a,b, Extended Data Fig. 6 and Supplementary  
Figs. 21–23). GraphST26, BANKSY and STAGATE27 were the top per
formers on this dataset in terms of median ARIs, with no significant 
difference between the three methods (Fig. 5b). Note that our results  
for SpiceMix differed from those reported in the original paper  
(Methods, ‘Human DLPFC 10x Visium data’).

Similarly, we benchmarked the domain segmentation accuracy of 
BANKSY against these algorithms on the STARmap 1,020 gene dataset21 
and found that BANKSY had the highest ARI (Fig. 5c and Extended Data 
Fig. 7c, Methods, ‘STARmap data’).

Deep-learning methods can be sensitive to random seed choice50, 
which was indeed the case for the three deep-learning methods tested 
(SpaGCN, STAGATE and GraphST) (Extended Data Fig. 7b). To robustly 
estimate their performance, we calculated the median ARI across 
11 commonly used seeds in both the DLPFC and STARmap analyses. 
Importantly, BANKSY was highly robust to random seed choice.

Fig. 4 | BANKSY accurately identifies anatomically distinct cell subtypes 
around the mouse hippocampus. a, BANKSY separates CA3 neurons from 
SSC neurons. b–h, Comparisons with nonspatial clustering (λ = 0) and several 
spatial clustering methods (b, nonspatial; c, MERINGUE; d, Giotto; e, BayesSpace; 
f, SpiceMix; g, SpaGCN; h, FICT). When an algorithm merged the CA3 or SSC 
neurons with those in the CA1 or dentate gyrus, the merged clusters are shown 
in blue (BayesSpace and FICT), light green and brown (SpiceMix) or light blue 
(SpaGCN). i, Example DEGs that distinguish CA3 neurons from SSC neurons.  
Red, high expression; white, medium expression; blue, low expression. j, BANKSY 
separates the fornix (green) and thalamic (purple) oligodendrocytes.  
k–q, Comparisons to other methods (as in b–h). r, Example DEGs distinguishing 

fornix and thalamic oligodendrocytes. s, Schematic showing a coronal section  
of the hippocampal region shown in a–r. t–w, Corroboration using scRNA-seq 
data. t, UMAP showing CA3 and cortical neurons from the scRNA-seq data.  
u, Blue box, expression levels of DEGs determined from comparing the CA3 and 
SSC BANSKY clusters. Brown box, expression levels of the top two corresponding 
scRNA-seq guilt-by-association genes. v, UMAP showing fornix and thalamic 
oligodendrocytes in the scRNA-seq data. w, Blue box, expression levels of DEGs 
determined from comparing the fornix and thalamic oligodendrocyte BANSKY 
clusters. Brown box, expression levels of the top two corresponding scRNA-seq 
guilt-by-association genes.
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To demonstrate BANKSY’s ability to cluster both cell types and 
tissue domains in the same dataset, we performed domain segmenta-
tion on the mouse hypothalamus MERFISH dataset that we previously 

analyzed using BANKSY’s cell typing mode (Fig. 3). As there were no 
ground truth annotations for this dataset, we compared the results to 
brain regions annotated in the original study2 and the Allen Mouse Brain 
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Fig. 5 | BANKSY accurately segments tissue domains. a, Left, Reference 
annotations for sample no. 151673 of the Visium human DLPFC dataset. Right, 
Spatial maps of DLPFC clusters from nonspatial clustering, Giotto’s HMRF, 
BayesSpace, SpiceMix, SpaGCN, STAGATE, GraphST and BANKSY. Clusters are 
colored according to their closest matching reference annotation; the numbers 
in parentheses represent the ARI for each sample computed against the reference 
annotations. b, Box plot of domain segmentation accuracy on the 12 DLPFC 
datasets, quantified using the ARI metric. For the deep-learning methods 
(SpaGCN, STAGATE, GraphST) and BANKSY, each of the 12 data points represents 
the median across 11 random seeds. Center line, median of the 12 data points; 
red dotted line, mean of the 12 data points; height of the box, interquartile range 

(IQR); whiskers, 1.5 × IQR. *P < 0.05, ***P < 0.001, NS P > 0.05 (paired one-sided 
Wilcoxon signed-rank test). Exact P values from left to right: 0.00024, 0.00024, 
0.010, 0.00049, 0.00024, 0.72, 0.48. c, Domain segmentation comparison on 
the STARmap 1,020-gene mouse visual cortex dataset (ARI in parentheses). 
L1–6, six neocortical layers. d, BANKSY domain segmentation identified known 
brain regions in MERFISH mouse hypothalamus data matching annotations 
from Moffitt et al.2 (Allen Reference Atlas-Mouse Brain52 annotations shown 
in parentheses when they differ). 3V (V3), third ventricle; BNST (BST), bed 
nucleus of the stria terminalis; MPA (MPO), medial preoptic area; MPN, medial 
preoptic nucleus; PaAP (PVH), paraventricular hypothalamic nucleus; PVA (PVT), 
paraventricular thalamic nucleus.
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Reference Atlas51,52, and found that the domains identified by BANKSY 
broadly matched known brain regions (Fig. 5d).

To test BANKSY on spatial proteomics data, we examined a human 
intestine CODEX dataset8. The authors proposed a hierarchical model 
of intestinal structure, in which cell types formed neighborhoods, 
which were organized into communities, which in turn formed tissue 
units. BANKSY’s domain segmentation at low resolution (res = 0.06) 
accurately identified domains matching their tissue unit annota-
tions (Extended Data Fig. 8a–c, Methods, ‘Human healthy intestine 
CODEX data’). At a higher resolution (res = 0.35), BANKSY identified 
the boundary of the CD66+ mature epithelial community, which cor-
related with CD66 expression (Extended Data Fig. 8d,e). Additionally, 
BANKSY identified an α-smooth muscle actin-expressing community 
that was previously merged with the spatially distinct smooth muscle 
community.

BANKSY enables spatially informed batch correction
In the DLPFC benchmarking analysis, we analyzed the data one sam-
ple at a time for consistency with benchmarking analyses in previous 
studies9,23,25–27. However, BANKSY can also be run in multisample mode 
(simple data concatenation) to jointly cluster cells or spots from mul-
tiple datasets. For example, concatenating BANKSY’s z-transformed 
neighbor-augmented data matrices of four DLPFC datasets from one 
individual yielded tissue domain annotations more consistent with 
manual annotations (Supplementary Fig. 24). Simple concatenation 
may not always succeed in overcoming batch effects, necessitating the 
use of explicit batch correction techniques. For example, Huuki-Myers 
et al.28 used nonspatial batch correction (Harmony53) to integrate the 
12 Visium DLPFC datasets and then fed the resulting integrated object 
to BayesSpace23 for spatial clustering (Harmony → BayesSpace). One 
potential limitation of this approach is that spatial information is 
ignored in the batch correction step.

To explore a spatially informed strategy, we applied Harmony 
to principal component scores computed using BANKSY’s spatial 
neighbor-augmented embedding of Visium spots from the 12 data-
sets, and then clustered the spots in the resulting integrated space 
(BANKSY → Harmony). Joint BANKSY clustering of the 12 datasets  
in this manner outperformed nonspatial clustering, as well as  
BayesSpace with and without Harmony batch correction28 (Extended 
Data Fig. 9).

BANKSY scales to large datasets
We tested the scalability of BANKSY and the nine other methods tested 
in this study to large datasets (Fig. 6) using a mouse brain MERFISH 
dataset44. BANKSY was the only method that scaled to 2 million cells, 
while the other spatial algorithms hit memory or software limits, or 
failed to return a result within 16 h (Methods, ‘Scalability analysis’). 
Moreover, BANKSY’s runtime was only marginally higher than that 
of nonspatial clustering, while the other methods were 1–3 orders of 
magnitude slower. For graphics processing unit (GPU)-compatible 
methods (GraphST, SpiceMix, STAGATE and SpaGCN), we repeated 
the scalability benchmarking on a GPU server (Extended Data  
Fig. 10). BANKSY on a central processing unit (CPU) server was faster 
and eight times more scalable than these methods on the GPU. In sum-
mary, BANKSY is 10–1,000 times faster and 2–60 times more scalable 
than existing spatial clustering algorithms.

BANKSY is robust to parameter variation
To further demonstrate the robustness of BANKSY to parameter selec-
tion, we performed systematic parameter sweeps on the VeraFISH, 
MERFISH, Visium and Slide-seq v.1 datasets. We varied λ, the number 
of embedding space neighbors (kexpr), the number of physical space 
neighbors (kgeom) and the number of principal components in a range 
centered on the default values. On all four datasets, the quality of the 
results was consistent across the range of parameter values, indicating 
that BANKSY’s biologically motivated mathematical model confers 
stability and robustness to parameter variation (Methods, ‘Effect of 
parameter variation’ and Supplementary Figs. 25–40).

BANKSY performs well on simulated benchmark data
Finally, we tested BANKSY on a simulated dataset, which offered the 
advantage of unambiguous ground truth labels for cell typing and 
tissue domain segmentation (Methods, ‘Simulated data’). We trained 
a probabilistic model54 of gene expression on STARmap expression 
data21 and constructed spatial domains with the same cell-type pro-
portions as those in the STARmap dataset. We then tested BANKSY  
and other methods on both cell typing and domain segmentation 
across a range of gene set sizes (400, 600, 800 and the full 1,020 
gene set). On domain finding, BANKSY attained an ARI greater than  
0.8 for all gene subsets, while the remaining methods had ARI values 
below 0.6 (Extended Data Fig. 3a–c). Across all gene set sizes, BANKSY 
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was also consistently the most accurate algorithm for cell typing 
(Extended Data Fig. 3d–f).

Discussion
We have described BANKSY, a spatial clustering algorithm that unifies 
cell typing and tissue domain segmentation under a single, scalable 
machine-learning framework with minimal free parameters (Fig. 1). 
BANKSY uses the principle that a cell is known by the company it keeps, 
which suggests that cell states and tissue domains can be identified 
more accurately by appending spatial neighborhood descriptors to 
each cell’s own gene expression vector. Specifically, BANKSY encodes 
the local transcriptomic neighborhood of each cell using the average 
neighborhood expression and the AGF. In the benchmarking analyses, 
BANKSY identified cell types (Figs. 2 and 4) and anatomical structures 
(Fig. 5) accurately. BANKSY also sensitively detected spatially segre-
gated cell states, such as the MOD cell states (Fig. 3).

By increasing a single parameter (λ), BANKSY prioritizes the micro-
environment transcriptome over cells’ own transcriptomes, enabling 
detection of contiguous tissue domains defined by spatial neighbor-
hood composition. This allowed BANKSY to identify cortical layers 
in human DLPFC (Visium) and mouse visual cortex (STARmap) data 
more accurately than existing domain segmentation tools (Fig. 5a,b,d). 
Similarly, BANKSY accurately identified anatomical structures in the 
mouse hypothalamus MERFISH data2 and accurately segmented tissue 
domains in a CODEX spatial proteomics dataset of the human intes-
tine8. Additionally, BANKSY’s domain segmentation mode can be used 
for ‘spatial quality control’, that is, for identifying low-quality regions 
in spatial omics datasets (for example, necrotic zones in organoids and 
out-of-focus fields of view in imaging-based data).

BANKSY is orders of magnitude faster and 2–60 times more scal-
able than existing spatial clustering and domain segmentation algo-
rithms (Fig. 6). The computational complexity of BANKSY’s neighbor 
matrix calculation is linear (𝒪𝒪𝒪n)) in the number of cells, making it  
far faster than the clustering step. Thus, BANKSY has, in effect, the same 
computational complexity as conventional nonspatial clustering. 
Speed and scalability are essential features of any modern spatial 
clustering tool, given that technologies are now available to profile 
over a million cells55 in a single dataset.

Robustness to parameter variation is another key attribute of 
BANKSY. On three distinct datasets, BANKSY gave qualitatively similar  
results across a wide range of parameter settings (Supplementary 
Figs. 25–40). This essential feature facilitated our analysis of datasets 
at default parameter settings and engenders confidence in BANKSY’s 
ability to generalize to diverse technologies and sample types with 
minimal parameter tuning. Indeed, we were able to apply BANKSY to 
a different single-cell omics modality (the CODEX multiplexed prot-
eomics assay8) without changing any of the parameter settings. From a 
usability perspective, another benefit of BANKSY is that the code inte-
grates seamlessly into widely used single-cell analysis workflows and 
data structures such as Seurat56, SingleCellExperiment35 and SCANPY36.

Neighborhood-based feature augmentation is a biologically 
motivated and generalizable strategy for combining spatial and 
molecular information. We showed that it can be used to robustly 
and scalably infer cell types and tissue domains from diverse omics 
technologies. These inferences have been validated using established 
external benchmarks, that is, scRNA-seq data, known anatomical 
structures and simulated benchmarks. BANKSY has already been 
adopted in two recent studies. One sought best practices for analyz-
ing Xenium data: they benchmarked domain segmentation methods 
on the mouse brain and identified BANKSY as the best performer57. 
Another evaluated BANKSY against five other domain segmentation 
methods on a human cerebellum Visium dataset and concluded 
that BANKSY correlated best to independently defined anatomical 
domains58. The generality of BANKSY has enabled its use on datasets 
completely unrelated to molecular profiling. For instance, it has been 

used to improve detection of laminar zones in whole-brain magnetic 
resonance imaging data59.

Finally, we showed how BANKSY’s spatial embedding can be used to 
aid data integration across samples by performing integrated analysis  
of the 12 DLPFC datasets9. It is likely that the BANKSY embedding could 
simplify other spatial omics tasks, such as inference of cell–cell signal-
ing interactions and differentiation trajectories. In summary, BANKSY’s 
biologically inspired approach offers an accurate, sensitive, versatile 
and scalable spatial clustering tool that unifies cell-type identification 
and domain segmentation.
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Methods
All experiments were carried out in accordance with Agency for  
Science, Technology and Research (A*STAR) guidelines. In particular,  
the VeraFISH mouse data were collected in accordance with the 
approved Institutional Animal Care and Use Committee (IACUC) pro-
tocol no. 211580 obtained from the biomedical resource center.

The BANKSY algorithm
In this section, we describe the BANSKY algorithm in the context 
of clustering a set of cells, based on the expression of a set of genes 
and the physical locations of the cells or capture spots (used in 
sequencing-based technologies). We captured gene expression vari-
ations in the spatial neighborhoods of cells using a weighted average 
of the expressions of neighboring cells and a kernel inspired by the 
Gabor filter. The Gabor filter is used in computer vision applications 
and involves the construction of the kernel by modulating a planar 
sinusoidal wave using a Gaussian function29–31. In this study, instead 
of modulating a planar wave, we modulated the azimuthal Fourier 
transform of the gene expression in a cell’s neighborhood. The result-
ing kernel captures variations in gene expression in azimuthally aniso-
tropic directions within each cell’s neighborhood (that is, it measures 
gradients in gene expression in each neighborhood).

Before describing the algorithm in detail, we give a brief overview 
of its main mechanics. We began by constructing a neighborhood 
graph between cells in physical space, which can be done using, for 
instance, k-nearest neighbors or radius nearest neighbors. We used 
this to compute feature-wise z-scaled versions of two matrices: an 
average neighborhood expression matrix and an AGF matrix. These 
matrices are then scaled on the basis of a mixing parameter λ, which 
controls their relative weighting, and concatenated with the original 
gene–cell expression matrix to construct two neighbor-augmented 
matrices, one for cell typing and another for domain segmentation, 
which differ only in the value of λ used in the combination step. Con-
ceptually, this corresponds to lifting the embedding of the cells from 
the (nonspatial) gene expression space to a space constructed by taking 
the direct product of the original nonspatial expression space, the aver-
age neighborhood expression space and the AGF space. Both the cell 
typing and domain segmentation neighbor-augmented matrices are 
then processed similarly: dimension reduction (principal component 
analysis (PCA)), followed by graph-based clustering, resulting in the 
respective cell type and domain segmentation labels.

In the following sections, we describe this procedure formally.

Spatial kernels. Let a set of cells arranged in physical space be indexed 
by the set 𝒰𝒰 𝒰 𝒰1, 2,… ,N }, and have a set of spatial coordinates, along 
with matching cell indices, given by 𝒳𝒳 𝒰 𝒰𝒪u, xu) ∈ 𝒰𝒰 𝒰 ℝ2}. For each cell, 
assume that the expression of the same set of p ∈ ℤ≥1 genes has been 
measured, so that the expression information can be expressed as a 
gene–cell expression matrix 𝒞𝒞 𝒰 [c1 c2 … cN] ∈ ℝp×N , where cu ∈ ℝp  is  
the expression of the p genes in cell u.

Next, we constructed spatial neighborhoods for all cells. In the 
present discussion, we restrict ourselves to k-nearest neighbors as our 
neighborhood construction policy, but we note that radius nearest 
neighbors or other policies may be handled analogously. We denote 
the set of kgeom neighbors for cell u with the following equation:

ηu
kgeom

𝒰 𝒰v ∈ 𝒰𝒰 𝒰 𝒰u}| cell v iswithin the kgeom

nearest neighbors of cellu in𝒳𝒳}

Weighted neighborhood mean. For each gene q, we computed the 
mean expression in the neighborhood of cell u ∈ 𝒰𝒰 as:

M (q)
u 𝒰 ∑

v∈ηu
kgeom

g(q)v Γ
kgeom
uv

where g(q)v  is the expression of the qth gene in neighboring cell v and 
the term Γkgeomuv  is a Gaussian weighting envelope defined as:

Γ
kgeom
uv 𝒰

exp
−r2uv
r2u ̄v

∑
w∈ηukgeom

(exp −r2uw
r2u ̄v

)

with ̄v defined as the ⌊(m × kgeom)/2⌋-th nearest neighbor (that is, for 
kgeom = 15, ̄v corresponds to the 7-th nearest neighbor and ru ̄v  is the 
distance between cells u and ̄v). This effectively makes the Gaussian  
modulation envelope invariant to differences in cell densities in  
physical space. As a default, we set kgeom = 15 in all analyses in this study. 
Note that the results are insensitive to moderate variations around this 
set point (Supplementary Figs. 27 and 35).

AGF. Consider cells u, v ∈ 𝒰𝒰 . Let (ruv, ϕuv) be the position of cell v in  
the local polar coordinate frame of cell u, with origin (ruu, ϕuu) = (0, 0) 
and ϕ measured counterclockwise from the positive horizontal axis. 
For gene q, cell u, the AGF is defined as:

G(q)
u 𝒰 | ∑

v∈ηu
2kgeom

g(q)v Γ
2kgeom
uv eiϕuv | (1)

where ηu
(⋅), g(q)v  and Γ(⋅)uv  are as defined above. We used 2 × kgeom as the 

number of spatial neighbors to compute the AGF because estimating 
a gradient requires more data points than estimating a mean. The 
azimuthally varying complex sinusoid eiϕuv , together with the 
scale-invariant Gaussian-like wave modulation term Γkgeomuv  in the Fourier 
transform (equation (1)) is in the spirit of the Gabor filter and motivates 
our terminology.

Neighbor-augmented matrix. Once the set of the individual terms 
M (q)

u  and G(q)
u  (over the genes and cells) have been calculated, we may 

collect them into two matrices, that is:

ℳ 𝒰
⎡⎢⎢⎢⎢
⎣

M (1)
1

M (1)
2

… M (1)
N

⋮ ⋮ ⋱ ⋮

M (p)
1

M (p)
2

… M (p)
N

⎤⎥⎥⎥⎥
⎦

and

𝒢𝒢 𝒰
⎡⎢⎢⎢⎢
⎣

G(1)
1

G(1)
2

… G(1)
N

⋮ ⋮ ⋱ ⋮

G(p)
1

G(p)
2

… G(p)
N

⎤⎥⎥⎥⎥
⎦

The rows (features) of these two matrices, along with those of the 
gene–cell matrix 𝒞𝒞 are then zero-centered and scaled to have unit  
variance (z-scaled). The resulting scaled 𝒞𝒞, ℳ  and 𝒢𝒢 matrices are sub-
sequently combined to form a neighbor-augmented matrix:

ℬ 𝒰
⎡⎢⎢⎢⎢
⎣

√1 − λ𝒞𝒞

√λ/μℳ

√λ/𝒪2μ) 𝒢𝒢

⎤⎥⎥⎥⎥
⎦

∈ ℝ3p×N (2)

where μ = 1.5 is a normalization factor to ensure the convexity of the 
linear combination of distance matrices (Supplementary Section 2) 
and λ ∈ [0, 1] ⊂ ℝ  is a mixing parameter that controls the relative  
weights of the three component matrices. For cell typing, we used a 
default value of λ = 0.2 to construct the neighbor-augmented matrix 
ℬ; for domain segmentation, we used λ = 0.8 for the creation of the 
corresponding ℬ matrix. In either case, the subsequent processing of 
this matrix was similar: PCA (20 principal components as a default) for 
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dimensionality reduction, followed by Leiden clustering for commu-
nity detection. Finally, we note that at λ = 0, the algorithm only takes 
the cells’ own expression into account and reduces to nonspatial  
(conventional) clustering.

NCC score
We defined an NCC score to quantify intermingling across layers and 
used this to compare different clustering solutions (BANKSY versus 
nonspatial (λ = 0) in Fig. 2). In this section, we describe this score  
formally. Let 𝒰𝒰 and ηu

kgeom
 be as defined in Methods, ‘Weighted neigh

borhood mean’. A particular clustering solution is a partition of 𝒰𝒰;  
that is, if the set of cells has been clustered into p clusters, 𝒰𝒰  can be 
written as 𝒰𝒰 𝒰 𝒰p

q=1sq , where for each q, sq ⊂ 𝒰𝒰  is the set of indices of  
cells assigned to the qth cluster and may therefore be identified with 
that cluster. These sets are pairwise disjoint: sq ∩ sr 𝒰 ∅ for arbitrary 
q, r ∈ {1, 2, …, p}.

Given 𝒰𝒰, ηu
kgeom

 for each u ∈ 𝒰𝒰 and a clustering solution 𝒰sw}
p
w=1, we 

can define the NCC score of a given query cluster sq with regard to a 
reference cluster sr as:

NCCsq ,sr 𝒰
∑u∈sr∑v∈ηu

kgeom
1sq 𝒪v)

∑u∈sr∑v∈ηu
kgeom

1sr 𝒪v)
(3)

where 1sq 𝒪⋅) is the indicator function:

1sq 𝒪v) ∶𝒰 {
1 if v ∈ sq ,

0 otherwise
(4)

A higher NCC value indicates greater spatial intermingling between 
clusters, as this intermingling will result in a higher between-cluster 
connectivity (numerator).

Metagene computation
Metagene expression captures the difference between two clusters  
that are to be compared and can be used to visualize how BANKSY 
helps to better separate out the cells in subclusters in the neighbor- 
augmented space, relative to the original own-expression space  
(as shown in Fig. 3b).

For the i-th cell, we defined the metagene expression of subcluster 
2 relative to subcluster 1 as the difference between the average expres-
sions of DEGs more highly expressed in subcluster 2 and those  
more highly expressed in subcluster 1. Explicitly, for the i-th cell, let 
𝒰g(i)

11
,… , g(i)

1p } be the expression values (z-scaled over all the cells in the 
two subclusters) of each of the p DEGs upregulated in subcluster 1; 
similarly, let 𝒰g(i)

21
,… , g(i)

2q}  be the values of the q genes upregulated in 
subcluster 2; thus, the metagene of the own expression for subcluster 
2 relative to subcluster 1 is defined as:

m(i)
21
𝒰
∑q

k=1 g
(i)
2k

q −
∑P

j=1 g
(i)
1j

p (5)

The metagene expression for the expression of the neighbor is 
defined analogously using the corresponding p and q neighbor  
expression rows of these genes in the matrix ℳ. Once the metagene 
expressions are computed, each cell can be plotted in the product  
space of the neighboring and own-expression metagenes.

Cluster consensus across runs
The comparison of BANKSY to nonspatial clustering (λ = 0) and other 
methods required matching cluster labels across different clustering 
solutions, such that clusters corresponding to the same or similar sets 
of cells were given the same numeric labels. This cluster matching  
or consensus enabled direct comparison of specific clusters to their 
closest equivalents in other methods. One example of this may be 

seen in Fig. 4, where clusters corresponding to cell types arranged in 
anatomical structures were compared between BANKSY, nonspatial 
clustering and other existing methods, and in some cases across dif-
ferent sets of clustering resolutions or other parameters (for instance, 
in Fig. 4, Extended Data Figs. 4 and 5 or Supplementary Figs. 25–40). 
Another set of examples may be seen in Fig. 5a and the associated 
Supplementary Fig. 21, where domain segmentation solutions across 
different methods were compared. Cluster consensus is also required 
for computing some clustering accuracy metrics, for example, the 
Matthews correlation coefficient, one of the three metrics used to 
benchmark clustering performance on the human DLPFC dataset.

To perform the cluster consensus, we posed the cluster consen-
sus problem as a linear sum assignment problem, which admits a 
strongly polynomial solution via the Hungarian algorithm60. Briefly, 
given two clustering partitions (defined in Methods, ‘NCC score’) on 
the same dataset, we set up a matrix such that the rows and columns 
corresponded to individual clusters from the two clustering partitions, 
respectively, and the entries were the number of cells that were com-
mon between the pair of clusters corresponding to that row–column 
pair. The goal was to find, for each row of this matrix, a unique matching 
column, so that the number of cells that were common between the 
matching clusters was maximized over all the clusters.

For the Python version of the code, we used the SciPy (v.1.6.2) 
function scipy.optimize.linear_sum_assignment61. For the R version 
of the code, we used the HungarianSolver function within the Rcp-
pHungarian62 library on CRAN.

Default settings for BANKSY embedding and clustering
For all analyses used in this study, we used the default parameters 
listed in this section.

The physical-space neighborhood graph was constructed using 
the spot, bead or cell locations, with a k-nearest neighbor approach. 
We used a setting of kgeom = 15, except in the Visium DLPFC data, where 
the spots were arranged in a unique hexagonal geometry. This moti-
vated the use of kgeom = 18, which corresponded to taking up to the 
second-order neighbors of each spot.

In all cases, we z-scaled each row (centered the means and scaled 
the standard deviations of each feature to 1) of the 𝒞𝒞, ℳ  and 𝒢𝒢  
matrices before computing the neighbor-augmented matrix. To  
compute the neighbor-augmented matrix, we used a setting of λ = 0.2 
for cell typing and λ = 0.8 for domain segmentation, unless specified 
otherwise.

Next, we used PCA to reduce the dimensionality of the neighbor- 
augmented matrix, retaining the top 20 principal components.  
We then used the Leiden clustering33 algorithm at default settings,  
with the number of neighbors in the expression space graph set  
to kexpr = 50, and ran it to convergence. We used the same parameters 
from the PCA step onward to perform nonspatial (λ = 0) clustering.

Mouse cerebellum Slide-seq data
For the Slide-seq mouse cerebellum dataset, we filtered out cells with 
fewer than 20 and more than 1,000 gene counts. From Slide-seq v.2, 
we filtered out cells with fewer than 50 and more than 2,500 gene 
counts. For both datasets, we removed genes present in fewer than 
ten cells and retained the top 2,000 highly variable genes (HVGs). For 
Slide-seq v.2, we also filtered out bead locations beyond a fixed radius 
of 2,550 µm around an approximate center point of the puck to remove 
beads outside the puck.

We then normalized the total gene counts per cell to the median 
gene count and ran nonspatial and BANKSY clustering using default 
parameters (λ ∈ {0, 0.2}), with a clustering resolution parameter of 0.7.

We matched each cluster from both BANKSY and nonspatial clus-
tering (λ = 0) to their closest scRNA-seq reference cluster using RCTD 
cell-type composition estimates and marker gene expression (the mean 
of top marker genes in the scRNA-seq reference cell type) as a guide. 
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We then quantitatively compared BANKSY and nonspatial clusters by 
computing the point-biserial correlation of the cluster assignments 
with the RCTD weights. We performed the same correlation analysis 
against the scRNA-seq marker gene expression levels.

Mouse hippocampus VeraFISH data
One 6-week-old female mouse (C57BL/6NTac) was purchased from 
InVivos (https://www.invivos.com.sg/c57bl-6ntac/#tab-60391) and 
was euthanized and dissected for removal of the brain immediately 
on receipt. All animal procedures were done in accordance with the 
approved IACUC protocol (protocol no. 211580) obtained from the 
IACUC of the biomedical resource center. Mouse brains were embed-
ded in optimal cutting temperature compound (Sakura), frozen and 
stored at −80 °C.

The Veranome Biosystems VeraFISH assay was used for data collec-
tion. Tissue samples were permeabilized using 70% ethanol overnight 
and incubated with VeraFISH sample prep wash buffer for 2 h at 47 °C. 
After overnight incubation in VeraFISH Target Probe and Hyb Buffer, 
samples were rinsed with VeraFISH sample prep wash buffer for 1 h at 
47 °C and stored with the VeraFISH Cycling Buffer at 4 °C until imaging. 
Tissue samples were imaged in a fully automatic VSA-1 Imager from 
Veranome Biosystems that includes incubation with VeraFISH Barcode 
Probes and imaging through multiple hybridization processes. The 
multiplexed images were then processed using the VeraWorks software 
to reconstruct the spatial coordinates of the VeraFISH Barcode Probes. 
A Mask R-CNN-based deep-learning pipeline was used to segment 
4′,6-diamidino-2-phenylindole-stained nuclei and generate single-cell 
expression matrix in .csv files (cellmatrix.csv).

Once we had the raw gene counts per cell, we removed cells with 
total counts less than the 5th percentile and greater than the 98th per-
centile. We also removed any genes with expression (at least one count) 
in less than 1% of cells. The total counts in each cell in the resulting gene–
cell matrix were normalized to a value of 100, followed by BANKSY and 
nonspatial clustering using default parameters (λ ∈ {0, 0.2}), with a 
clustering resolution of 1.5.

To compute DEGs between the pair of neuronal subclusters 
shown in Fig. 4 and Supplementary Fig. 18a, we used the scran R pack-
age (v.1.18.7)63. We performed a Wilcoxon rank-sum test and t-test 
(two-sided, using default parameters) between each pair of clusters and 
took the union of the top ten markers from each of these comparisons. 
We repeated this procedure for the pair of oligodendrocyte subclusters.

For the scRNA-seq clustering analysis using the guilt-by-association 
genes (Fig. 4t–w and Supplementary Fig. 18), we used data from  
Yao et al.47. To isolate the L5/6 SSC and CA3 neurons, we used cells 
labeled ‘L5/6 NP CTX’, ‘L6 CT CTX’, ‘L6 IT CTX’, ‘L6b CTX’ and ‘CA3’ 
from the Smart-seq v.4 dataset. Our analysis was performed using the 
Seurat package, v.4.1.1 (ref. 34). We first normalized the expression 
count data using the NormalizeData function, with the normalization.
method argument set to LogNormalize. That is, each cell’s expression 
counts were divided by the total expression in that cell and multiplied 
by a scale factor of 10,000; finally, we log-transformed the data using 
log1p. Next, we used the ScaleData function to 0-center the mean of the 
expression of each gene and scaled its standard deviation to 1. Next, 
starting with the genes that were differentially expressed between the 
CA3 and SSC neurons in the VeraFISH data (as computed above), we first 
removed any genes not expressed in at least 1% of cells (using the raw 
counts data). Next, for each of the remaining genes, we computed the 
top 25 most highly correlated genes in the log-normalized and scaled 
data and once again removed any genes not expressed in at least 1% of 
cells. Finally, we clustered the cells using the remaining genes, repeat-
ing the subsetting, normalization and z-scaling steps on the raw count 
data for these genes, using five principal components, a resolution of 
0.2 and all other parameters set to the Seurat defaults. We repeated this 
analysis for the oligodendrocytes by subsetting cells labeled ‘Oligo’ 
from the data in Yao et al.47 (Smart-seq v.4 dataset).

For the MERINGUE (v.1.0) runs on this dataset, we used the standard  
pipeline from Miller et al.12. Briefly, MERINGUE computes a Delaunay 
triangulation graph between the physical locations of cells, with a  
maximum threshold distance within which cells are considered neigh-
bors (given by the filterDists argument in the getSpatialNeighbors 
function; we chose a threshold of 750 pixels, such that most adjacent 
cells were defined to be neighbors). It then computes the shortest 
path length (geodesic) distance in this physical space graph between 
each pair of cells that are neighbors in the transcriptome space graph. 
These distances are used to weight the edges of the transcriptome 
space graph during graph-based clustering. We used 20 principal 
components and kexpr = 10 in MERINGUE’s spatial clustering function, 
getSpatiallyInformedClusters. We then varied the parameter that 
controlled the effective clustering resolution (kexpr) to obtain clustering 
runs with 16–20 clusters.

Similarly, we ran BayesSpace (v.1.5.1)23 on the first 20 principal 
components computed on the normalized gene–cell matrix. To define 
neighborhood structure for the Markov random field model, we  
created a spatial network with k = 15 nearest neighbors. For cluster-
ing, we used default settings (t-distributed error model with 50,000  
Markov chain Monte Carlo iterations and a burn-in period of 1,000 
iterations) and a gamma smoothing parameter of 3. The output number 
of clusters was varied from 16 to 20.

For Giotto (v.1.1.0), we first created a spatial network with k = 10 
neighbors using default settings (Delaunay method and the maxi-
mum distance cutoff set to ‘auto’). To identify genes with spatially 
coherent expression patterns, we ran BinSpect with default param-
eters and selected the top 50% of genes based on the BinSpect score. 
Based on the number of clusters obtained from nonspatial (λ = 0) 
and BANKSY clustering, we ran Giotto’s HMRF for a fixed number of 
domains (16–20 clusters). Based on the authors’ recommendations 
(https://cran.r-project.org/web/packages/smfishHmrf/smfishHmrf.
pdf)22, we tested β (HMRF regularization parameter) from 0 to 50 in 
increments of 2. Finally, we selected the cluster labels obtained with 
β = 12 because the labels around this value of β were relatively stable.

To run FICT (v.1.0.0), we had to modify the code for preparing the 
input data provided by the authors (https://github.com/haotianteng/
FICT-SAMPLE)10 because the sample code was only tailored to parti
cular (fixed) datasets. After preparing the input data, we ran FICT on a 
neighborhood graph constructed with k = 10 nearest neighbors and a 
reduced dimension expression profile with d = 20. The number of cell 
types (clusters) was set to 16–20.

For SpiceMix11, we first created a neighborhood graph from spatial 
coordinates using k = 10 nearest neighbors with the dbscan (v.1.1-10) 
package in R64. We then ran SpiceMix on the neighborhood graph 
and processed the expression matrix. We used the default setting 
for all other parameters according to the authors’ tutorial notebook 
(https://github.com/ma-compbio/SpiceMix/blob/master/SpiceMix/
main_Maynard2021.ipynb) from the latest version of SpiceMix (GitHub 
commit ID: aea69f8), which differs from the published version11. Next, 
we chose results from the iteration (20) that maximized the Q func-
tion returned by SpiceMix (log-joint probability of the parameters 
and data). To obtain cluster labels, we performed Leiden clustering33 
on the metagene latent space with the igraph package (v.1.2.11) in R65, 
yielding 16–20 clusters by varying the clustering resolution parameter.

Mouse hypothalamus MERFISH data
The data for the mouse hypothalamus atlas study2 were downloaded 
from the link provided in the Data availability section. We used the  
data from all 11 naive animals (485,657 cells) and processed them with 
BANKSY’s multisample mode, as described next. As done in the original 
study, the gene Fos was removed from the dataset because it contained 
not a number (‘NaN’) entries. This dataset consisted of gene–cell matri-
ces (𝒞𝒞) that were normalized by the imaged volume of each cell; there-
fore, it did not need to be count-normalized further. We ran BANKSY 
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and nonspatial clustering using default parameters (λ ∈ {0, 0.2}), with 
a clustering resolution of 0.5. The multisample mode involved concat-
enating the 11 neighbor-augmented matrices along the columns to 
form a larger multisample matrix. The resulting cluster labels were 
harmonized using our cluster consensus algorithm, as described in 
Methods, ‘Cluster consensus across runs’. As in the original study, we 
removed all cells marked ‘ambiguous’ from the subsequent analysis. 
To compute the genes that were differentially expressed between the 
two oligodendrocyte subclusters, we used the scran package (v.1.18.7) 
as before, taking the union of the top ten DEGs from both the t-test and 
the Wilcoxon rank-sum test, with expression z-scaled across the 
oligodendrocytes.

We used Seurat v.4.1.1 to perform the clustering analysis using  
the guilt-by-association genes in the scRNA-seq data provided by  
Moffitt et al.2. The data matrix was filtered so that only cells with less 
than 20% mitochondrial RNA (pct.mito) and cells with more than 1,000 
detected genes were kept (nFeature_RNA). Next, we subset the data 
to keep only cells labeled MODs by the authors of the original study2  
and divided the counts in each cell by the total counts in that cell,  
multiplied by 10,000 (Seurat default), log-transformed using log1p,  
and z-scaled the data (centered to 0 and the standard deviation  
scaled to 1). Next we identified the 25 most highly correlated genes to 
the DEGs found above. We removed genes that did not have a count 
of at least 1 in at least 1% of all MODs. The original data were subset 
to the resulting set of guilt-by-association genes and to the MODs, 
count-normalized to 10,000, log1p-normalized and z-scaled, as before. 
Next, we used Seurat’s FindNeighbours with default parameters and 
the top five principal components to build a neighborhood graph in 
the expression space, followed by the FindClusters function with a 
resolution of 0.05. The uniform manifold approximation and projec-
tions (UMAPs) were generated with the top five principal components.

Human colorectal cancer MERSCOPE data
Vizgen MERSCOPE data comprising the gene–cell matrix and cell 
centroids for the sample ‘colon cancer 1’ was obtained from https://
info.vizgen.com/ffpe-showcase. The raw data consisted of 677,451 
cells profiled across 500 genes. For the downstream analysis, we 
kept cells whose total transcript count was between the 5th and 98th 
percentile, yielding 629,164 cells. The total transcript count in each 
cell was normalized to the median transcript count and then natural 
log-transformed. We then performed BANKSY and nonspatial cluster-
ing using default settings (λ ∈ {0, 0.2}).

To obtain cluster annotations, we ran the reference-based 
single-cell annotation method SingleR (v.1.4.1)66. To construct a refer-
ence, we used scRNA-seq data from Pelka et al.67, where 370,115 single 
cells were sequenced from colon normal and tumor samples obtained 
from 62 individuals. To reduce the influence of batch effects on clus-
ter annotations, we first created pseudobulk expression profiles for 
each individual by taking the average expression of all cells from a  
single individual for each gene. Next, we created a pseudobulk for  
MERSCOPE data by taking the average expression across all cells. We 
then computed the Spearman correlation between the pseudobulk 
expression profile for each individual with the MERSCOPE pseudob-
ulk and identified the individuals with the two highest correlations 
(ρ = 0.67, 0.55) for constructing the reference data. Raw counts and 
cell-type labels from these individuals were used as a reference in 
SingleR, with a Wilcoxon rank-sum test used to identify the top ten 
genes from each pairwise comparison between labels. Using pruned 
labels returned from SingleR, we annotated each cluster based on the 
majority label of all cells within a given cluster.

To identify cycling cells, markers were obtained from Table S2 
from Smillie et al.68 and Table S5 from Tirosh et al.69. Intersection of 
these markers with the genes present in the MERSCOPE dataset yielded 
a final gene set of 13 genes (Aurkb, Birc5, Bub1, Ccnb1, Cdca7, E2f1, 
Foxm1, Mcm2, Mcm6, Mki67, Mybl2, Pcna and Plk1). We used Nebulosa 

(v.1.0.2)70 to visualize the cycling metagene on the UMAP embedding 
of the BANKSY matrix.

Human DLPFC 10x Visium data
The 10x Visium data of the DLPFC was obtained from the spatialLIBD 
project (http://spatial.libd.org/spatialLIBD)71. The data consist of 12 
samples obtained from three individuals (four samples per individual). 
The layers of each sample were manually annotated9, with each sample 
having either five or seven layers. Before the analysis, we removed all 
spots with ambiguous layer assignments. We ran BANKSY and nons-
patial clustering (λ ∈ {0, 0.2}) on each sample separately, first normal-
izing the counts per spot to the median library size (total number of 
transcripts) across all spots of the sample. HVGs were then identified 
by modeling the mean variance relationship for each gene as imple-
mented in Seurat56. Data were subset to the top 2,000 variable genes. 
BANKSY was run using default settings, with one exception: because 
of the unique hexagonal geometry of these data, we used kgeom = 18, 
which corresponded to taking all spots up to second-order neighbors 
of a given index spot. We adjusted the resolution parameter from 0.1 
to 1.5 such that the number of clusters obtained matched the number 
of layers present in the manual annotation. Because more than one 
resolution parameter can yield the correct number of layers, for each 
dataset we report the median ARI across all parameter settings that 
had the correct layer number. Across all 12 datasets, we obtained a 
median ARI of 0.518. As a baseline, we ran the same pipeline for λ = 0 
corresponding to nonspatial clustering.

For benchmarking, we ran Giotto’s HMRF, BayesSpace, SpaGCN 
and SpiceMix on the same data. For Giotto, we used v.1.1.0 and followed 
the workflow on the package’s site (https://rubd.github.io/Giotto_site/
articles/tut11_giotto_hmrf.html). The workflow for all samples was 
the same. First, genes that were not detected in at least ten cells were  
filtered out. Next data were first count-normalized to a fixed scale  
factor and log-transformed, followed by gene-wise and cell-wise 
z-scaling. A spatial network was created using default settings (Delau-
nay method with the maximum distance cutoff parameter set to ‘auto’). 
We identified genes with a spatially coherent expression pattern using 
the BinSpect method using default parameters and selected genes with 
an adjusted P < 0.1 and with BinSpect scores in the top one percentile, 
yielding approximately 160 genes per sample. HMRF was run on the 
spatial network and spatial genes were identified, with the number 
of domains set to the number of layers present in the manual annota-
tion. Based on the author’s recommendations (https://cran.r-project.
org/web/packages/smfishHmrf/smfishHmrf.pdf), we tested β values 
(HMRF regularization parameter) from 0 to 100 in increments of 2. We 
then selected β = 16, which gave the best median ARI across all samples.

For BayesSpace (v.1.5.1), we followed the authors’ vignette (https://
edward130603.github.io/BayesSpace/articles/maynard_DLPFC.html). 
The workflow for all samples was the same. HVGs were first identified by 
modeling the mean variance relationship for each gene as implemented 
in the scran package. PCA was then performed on the top 2,000 variable 
genes. We ran BayesSpace on the first 15 principal components, with the 
number of clusters set to the number of layers present in the manual 
annotation. Clustering was performed at default settings for Visium 
data (t-distributed error model with 50,000 Markov chain Monte Carlo 
iterations, a burn-in period of 1,000 iterations and a gamma smoothing 
parameter of 3).

The results for SpiceMix11 differ from those reported in the original 
paper for three reasons: (1) we tested the latest version of their soft-
ware, which the authors described as more accurate (https://github.
com/ma-compbio/SpiceMix) than the previous version used in their 
paper; (2) the original SpiceMix study only benchmarked clustering 
performance on a small subset of the DLPFC dataset (4 of 12 samples).  
In contrast, we followed the common practice of testing on all  
12 samples23,25–27; (3) in the original study, SpiceMix was trained jointly 
on the four selected samples, whereas we followed the precedent 
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of analyzing each sample independently23,25–27. In our benchmark-
ing analysis of SpiceMix, we followed the authors’ tutorial notebook 
(https://github.com/ma-compbio/SpiceMix/blob/master/SpiceMix/
main_Maynard2021.ipynb) from the latest version of SpiceMix (GitHub 
commit ID: aea69f8).

Because of the stochasticity inherent in deep-learning methods, 
their performance can be sensitive to the choice of random seeds50. 
We therefore tested deep-learning methods (SpaGCN, STAGATE and 
GraphST), along with BANKSY, across 11 manual seeds and reported 
the median performance across seeds. We used eight seeds commonly 
used in machine learning, {0, 1, 2, 10, 42, 100, 123, 1234}, as well as 
three seeds used by the authors of the algorithms we tested, that is, 
{41, 1000, 2020}.

For SpaGCN (v.1.2.2), we followed the authors’ tutorial notebook 
(https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/
tutorial.ipynb), which demonstrated its analysis on sample no. 151673. 
We adapted the notebook for the 11 other samples, changing only the 
number of desired clusters (for samples with five cortical layers) but 
keeping all training parameters and model hyperparameters the same 
(200 epochs of training and a learning rate of 0.05). While the cluster-
ing results obtained were not identical to those reported in Hu et al.25, 
comparisons of the ARIs obtained showed close correspondence to 
the reported values.

For STAGATE (v.1.0.1), we followed the authors’ documentation 
(https://stagate.readthedocs.io/en/latest/T1_DLPFC.html). The data 
were preprocessed by filtering the top 3,000 HVGs, followed by nor-
malization and log-transformation. To construct the spatial network, 
we used the recommended cutoff radius of 150 when testing on the 
12 DLPFC samples. As recommended once again, we used mclust72 
in the clustering step when testing on the DLPFC dataset. Although 
STAGATE does not implement an option to refine the cluster labels 
(label smoothing), we applied the SpaGCN’s refinement procedure. 
Similarly, we maintained the same training parameters and model 
hyperparameters across all tests (500 epochs and a learning rate of 
10−4), and only changed the desired number of clusters.

For GraphST (v.1.1.1), we followed the authors’ documentation 
(https://deepst-tutorials.readthedocs.io/en/latest/Tutorial%201_ 
10X%20Visium.html), which demonstrated their workflow on sample 
no. 151673. In their preprocessing step, feature selection was con-
ducted by filtering the top 3,000 HVGs, followed by normalization, 
log-transformation and scaling. We used the authors’ default para
meters in training the GraphST network. In the clustering step, the 
mclust algorithm was used as recommended by the authors. Although 
their code includes an optional refinement step, we used SpaGCN’s 
refinement procedure for consistency across methods. Through-
out our benchmarking, we applied the same procedure on all runs  
across the 11 seeds by maintaining GraphST’s default training param-
eters and model hyperparameters (600 epochs of training, learning 
rate of 0.01) and fixed the number of clusters to be equal to that in the 
ground truth.

STARmap data
The data for the mouse visual cortex 1,020 gene dataset was obtained 
as specified in Wang et al.21. To obtain the reference domain annota-
tions, we started with the cell-type annotations provided by Wang 
et al.21. We performed three rounds of label smoothing, in each round 
relabeling a cell if more than eight of its 15 nearest neighbors belonged 
to a different cell type. After smoothing, we assigned cells with  
the oligodendrocyte, eL6-2, eL4 and eL2/3 cell-type labels to the corpus 
callosum, L6, L4 and L2/3 domains, respectively. Cells located to the 
left of the corpus callosum domains were labeled hippocampus, while 
cells positioned between the L6 and L4 domains were labeled L5. The L1 
domain in this dataset only encompassed a small number of cells and 
was not amenable to label smoothing. Hence we manually separated the 
L1 domain from the L2/3 domain. The resulting domain labels closely 

matched the positions of the domain boundaries that could be visually 
identified in Wang et al.21 (see Extended Data Fig. 7a for a comparison 
of cell-type and domain labels).

For domain segmentation, we used the code provided by Wang 
et al.21 for all normalization and scaling steps. We then performed 
BANKSY clustering using default settings, increasing the resolution in 
increments of 0.1 until seven clusters (corresponding to the number 
of spatial domains in the dataset) were obtained. This occurred at a 
clustering resolution of 0.9. Analyses using other methods, and the 
software versions used, are described in Methods, ‘Human DLPFC 10x 
Visium data’. For SpaGCN, we used neighboring cells’ contribution = 1 
as recommended in Hu et al.25 for this dataset.

For STAGATE, we adjusted the cutoff radius parameter to 500 to 
construct the spatial network, which yields an average of around ten 
neighbors per cell (mean = 10.42), as recommended in most tutorials 
in their documentation (https://stagate.readthedocs.io/en/latest/
T3_Slide-seqV2.html). Note that STAGATE’s documentation provides 
a tutorial on the STARmap dataset (https://stagate.readthedocs.io/
en/latest/T9_STARmap.html) in which a different cutoff radius of 400 
was set. However, this setting led to a lower performance (ARI = 0.544) 
compared to using a larger cutoff radius (ARI = 0.682); thus, we report 
STAGATE’s performance using the latter setting.

As described in the previous section, we tested the deep-learning 
methods (SpaGCN, GraphST and STAGATE), along with BANKSY, on 11 
commonly used random seeds and reported the median ARIs across 
these 11 seeds.

We note that both BANKSY and GraphST split the L2/3 region 
vertically. We performed additional analyses to investigate the  
possibility that this split was because of differential data quality 
between tiles in the upper and lower halves of the imaged region. 
First, we examined the spatial distribution of the number of detected 
genes (NODG) in each cell, a common quality control metric for data 
quality, but did not observe a tiling pattern in NODG that could explain 
the L2/3 split. We also did not find any statistically significant differ-
ences in NODG between the upper and lower clusters identified by 
BANKSY for any of the cell types (false discovery rate (FDR) q > 0.2; 
Benjamini–Hochberg adjustment for multiple testing). The NODG 
for each cell type with at least ten cells represented was compared 
using a two-tailed Wilcoxon rank-sum test. Thus, we did not find 
evidence that data quality differences drove the split in L2/3. Next, 
we asked if the split in L2/3 could be attributed to specific DEGs. We 
identified four genes with significant upregulation in the lower sub-
cluster (Trim32, Nr4a1, Nrgn and 2900055J20Rik; FDR q(Benjamini–
Hochberg-adjusted) < 0.02, two-tailed Wilcoxon rank-sum test) 
and two genes with upregulation in the upper subcluster (Hlf, Bcl6; 
FDR q(Benjamini–Hochberg-adjusted) < 0.04, two-tailed Wilcoxon 
rank-sum test), which may explain the splitting of this tissue domain 
into two spatially distinct clusters by BANKSY and GraphST. Neverthe-
less, for quantitative benchmarking purposes, we treated the split in 
L2/3 as an erroneous prediction by BANKSY and GraphST, and it was 
therefore reflected in the ARI metric.

Human healthy colon CosMx data
CosMX Spatial Molecular Imager data of the human healthy colon  
were downloaded from the NCBI Gene Expression Omnibus data-
base (accession no. GSM7473683 (ref. 73). The data include 50,966 
cells profiled across 960 genes. For the downstream analysis, we kept 
cells whose total transcript count was between the 5th and 98th per-
centile of the total transcript counts across all cells. These data had 
two sets of contiguous regions of interest (ROIs) (forming connected 
regions), along with some ROIs with scattered cells. We selected the 
ROIs corresponding to the larger of these connected regions (top 
part of the image; ROIs: 1–7, 13–16), yielding a total of 32,765 cells. 
Transcript counts per cell were normalized to the median total  
transcript count across all cells and were then natural log-transformed. 
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We then ran BANKSY and nonspatial clustering using default param-
eters (λ ∈ {0, 0.2}). We used Harmony (v.0.1.1) to perform batch 
correction across ROIs (run on the principal component scores 
computed from the BANKSY matrix, with ROI as the batch variable). 
Harmony-corrected PCA embeddings were then clustered.

To obtain cluster annotations, we ran the reference-based 
single-cell annotation method SingleR (v.2.2.0)66. We used scRNA-seq 
data from the Gut Cell Atlas74 as a reference, using only cells from 
healthy adult donors. Processed counts and high-resolution cell-type 
labels were used as a reference in SingleR, with a Wilcoxon rank-sum 
test used to identify the top 15 DEGs from each pairwise comparison 
between labels. Using labels returned from SingleR, we annotated each 
cluster based on the majority label of all cells within a given cluster.

To identify markers of the macrophage subpopulation uniquely 
identified by BANKSY (Extended Data Fig. 2a, macrophage.2), we per-
formed differential gene expression analysis with a Wilcoxon rank-sum 
test between the two macrophage subpopulations (macrophage.1 and 
macrophage.2; Extended Data Fig. 2c).

Human healthy intestine CODEX data
Processed CODEX multiplexed imaging data of the healthy human 
intestine were downloaded from Hickey75. To identify tissue units, 
we used data from the ileum, right and transverse colon regions from 
donor B0012. We ran nonspatial clustering and BANKSY in domain 
segmentation mode using default parameters (λ ∈ {0, 0.8}). To jointly 
cluster the regions, we ran Harmony (v.0.1.1)53 on the principal com-
ponent scores computed from the BANKSY matrix, with region as 
the batch variable. Harmony-corrected PCA embeddings were then 
clustered, with the resolution chosen to yield three clusters based on 
tissue unit annotation (mucosa, muscle and submucosa) provided by 
Hickey et al.8 (Extended Data Fig. 8a–c). To identify communities in 
the ascending colon region from donor B006, we followed the same 
procedure (without Harmony), increasing only the resolution to yield 
eight clusters to match the number of communities annotated in Hickey 
et al.8 (Extended Data Fig. 8d,e).

Simulated data
The simulated dataset was created using the scDesign2 tool54  
using default parameter settings (v.0.1.0). scDesign2 fits a proba-
bilistic model to cell-type-specific RNA count distributions in real  
STARmap data (based on the cell type labels from Wang et al.21) and then 
generates simulated counts based on this model. In the simulation, 
we retained the layer structure, layer-specific cell-type composition 
and cell density observed in real STARmap data. We varied the size of 
the simulated gene set from 400 to 1,020 genes by selecting random 
subsets of the full 1,020-gene STARmap panel. We generated three 
replicate datasets for each condition using different random seeds 
and reported the median result across the seeds. We also benchmarked 
six existing cell typing or tissue domain segmentation algorithms on 
the same datasets.

The BANKSY runs were performed at the default parameters. 
The resolution parameter is typically tuned by the user based on the 
desired ontological resolution (cell lineage, type, subtype or state) 
or the desired number of clusters. To obtain the desired number of 
cell types or tissue domains, we varied the resolution from 1.5 to 2.5 
for cell typing and 0.5 to 1.5 for domain segmentation. All clustering 
runs matching the desired number of clusters were used to compute 
the median ARI.

Most parameters for the other methods were also the defaults, 
as in the ‘Mouse Hippocampus VeraFISH data’ and ‘Human DLPFC 
10X Visium data’ sections of this study. We ran BayesSpace (v.1.5.1) 
on the top 20 principal components computed on the normalized 
gene–cell matrix and a k-nearest neighbor graph with k = 15. For cluster-
ing, the t-distributed error model was used with default parameters. 
For Giotto (v.1.1.0), we created a spatial network with k = 15 nearest 

neighbors using the default settings (Delaunay method with the maxi-
mum distance cutoff set to ‘auto’). We tested β (HMRF regularization 
parameter) from 0 to 50 in increments of 2 and selected all runs that 
yielded the correct number of clusters. For FICT, we used the same 
modified code with k = 10 nearest neighbors because k = 15 resulted 
in underclustering. Interestingly, while FICT allows the user to specify 
the number of output clusters, the actual number of clusters returned 
does not exactly match the specified number, which instead serves 
as an upper bound. For SpiceMix, we once again used the latest ver-
sion of their package (GitHub commit ID: aea69f8). We first created a 
neighborhood graph with k = 15 neighbors. We used the defaults for 
the regularization parameter λΣ = 1 × 10−6, the number of metagenes 
k = 15 and the number of iterations (200). We followed the authors’ 
tutorial notebook (https://github.com/ma-compbio/SpiceMix/blob/
master/SpiceMix/main_Maynard2021.ipynb) for clustering. For domain 
finding, we applied smoothing to the metagene matrix and labels as 
implemented by the authors. The smoothing radius was set at the 
90th percentile of the 15th nearest neighbor distance. For cell typing, 
smoothing was not performed.

On all datasets in this simulated benchmark, BANKSY substantially 
outperformed all competing methods at domain segmentation (λ = 0.8; 
Extended Data Fig. 3a–c). BANKSY also outperformed all other methods 
on all datasets at cell typing (λ = 0.2; Extended Data Fig. 3d–f). This 
result further supports the generality and high accuracy of BANKSY, 
and demonstrates the algorithm’s ability to perform both functions 
merely by varying a single hyperparameter.

Scalability analysis
To benchmark the scalability of BANKSY, we measured the elapsed time 
and peak memory of BANKSY and other methods on datasets of up to 
2 million cells. All methods were benchmarked on a virtual machine 
with 128 GB and 16 threads (Ubuntu v.18.04.5 LTS).

We used a Vizgen MERSCOPE mouse brain dataset consisting of 
nine coronal slices from three biological replicates44. The size of the 
slices ranged from 70k to 88k cells, with 483 genes profiled per slice. 
To form smaller datasets, we cropped one slice (slice 2, replicate 1) to 
4k, 8k, 16k, 33k and 83k cells (5% to 100% of the data, logarithmically 
spaced). To form larger datasets, we concatenated multiple slices to 
form datasets of sizes 100k, 250k, 500k, 1 million and 2 million cells. 
As the total number of cells from all nine slices was less than a million, 
we duplicated slices whenever necessary. In concatenating the spatial 
coordinates for different slices, we ensured that the k-nearest spatial 
neighbors for each cell in a slice belonged to the same slice.

We benchmarked BANKSY (v.0.1.3) against conventional non-
spatial clustering (Seurat v.4.0.5), FICT (v.1.0.0), MERINGUE (v.1.0), 
SpiceMix (without GPU, GitHub commit ID: aea69f8, latest version of 
the code), Giotto’s HMRF (v.1.1.0), SpaGCN (v.1.2.2), STAGATE (v.1.0.1) 
and GraphST (v.1.1.1). The analysis pipeline for each method is simi-
lar to what is described in the ‘Mouse Hippocampus VeraFISH data’ 
and ‘Human DLPFC 10X Visium data’ sections. The elapsed time and 
peak memory were measured using the peakRAM package (v.1.0.2) for 
BANKSY, conventional clustering, MERINGUE and Giotto HMRF and the 
/usr/bin/time command for FICT and SpiceMix. We terminated any run 
after 16 h of elapsed time.

Of the six methods benchmarked, only BANKSY and conventional 
nonspatial clustering scaled to over a million cells. MERINGUE failed 
on datasets equal to or larger than 33k cells because of R’s indexing 
limits (‘long vector not supported’). FICT failed on datasets equal 
to or larger than 250k cells because there was insufficient memory 
(NumPy ‘ArrayMemoryError’). Giotto’s HMRF failed on datasets equal 
to or larger than 500k cells due to a recursion error (‘maximum recur-
sion depth exceeded in comparison’), despite setting the stack size to 
unlimited (ulimit -s) and increasing the program’s default recursion 
limit by tenfold to 500,000 (https://github.com/RubD/Giotto/blob/
master/inst/python/reader2.py#L137).
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In the scalability analysis performed on the GPU, we benchmarked 
the runtimes of algorithms compatible with GPU on an NVIDIA Tesla 
T4 with 16 GB of random access memory (CUDA v.12.0) using the same 
datasets as in the CPU benchmarks (Extended Data Fig. 10). We ran all 
methods on increasingly large datasets until an out-of-memory error 
was encountered.

Effect of parameter variation
We assessed the effect of parameter variation on the output of BANKSY 
across four datasets obtained using distinct spatial technologies: 
the 10x Visium Human DLPFC dataset (Supplementary Fig. 25); the 
MERFISH mouse hypothalamus dataset (Supplementary Fig. 26); the 
VeraFISH dataset (Supplementary Figs. 27–34), and the Slide-seq v.1 
dataset (Supplementary Figs. 35–40). For each dataset, we varied the 
kgeom, λ, number of principal components and kexpr parameters around 
the default settings.

Because there is a known ground truth for the 10x Visium data-
set, we quantitatively assessed the effect of parameter variation by 
computing the median ARI across all 12 samples for a given set of 
parameters. In particular, we varied the number of principal compo-
nents from 15 to 30 in increments of 5, kexpr from 30 to 70 in increments 
of 10 and the number of highly variable features used from 1,000 to 
3,000 in increments of 500. λ was fixed at 0.2 while kgeom was fixed at 
18 corresponding to all spots up to the second-order neighbors of the 
index spot. We compared each of the parameters in a pairwise fashion,  
yielding 65 different parameter combinations (Supplementary  
Fig. 25). Across all combinations, the median ARI remained high 
(median of medians = 0.512) and exhibited little variation (IQR = 0.015), 
suggesting that BANKSY is robust to variation in the input parameters 
(Supplementary Fig. 25).

Statistics and reproducibility
Most datasets shown in this article are from publicly available data-
sets (Data availability section). For these datasets and the VeraFISH 
dataset, no statistical method was used to predetermine sample size 
and no data were excluded from the analyses. Full sample sizes are 
as follows: Slide-seq and Slide-seq v.2 datasets: 25,551 and 39,496 
cells, respectively; MERFISH mouse hypothalamus data: all 11 naive 
animals (485,657 cells); scRNA-seq study of MODs in the mouse hypo-
thalamus, all cells labeled MODs by the authors of the original study 
(6,611 cells); VeraFISH mouse hippocampus dataset: all 10,994 cells; 
corresponding scRNA-seq analysis: all cells in neuronal clusters (as 
labeled by the authors, 2,386 cells) and all cells labeled ‘Oligo’ (231 
cells); MERSCOPE colorectal cancer data: all 677,451 cells; DLPFC 
Visium dataset: all 12 samples; STARmap dataset: all 1,207 cells anno-
tated by the authors; CODEX data: all 33,958 cells from the ileum, all 
25,403 cells from the right colon region and all 27,784 cells from the 
transverse colon region from donor B0012 for tissue domain annota-
tion. For community annotation: 38,371 cells from donor B006 in the 
ascending colon region; simulated data: we created three samples for 
each gene set condition (400, 600, 800 and 1,020 genes), including 
4,996 cells each.

The only data exclusions were as follows. In the mouse hypothala-
mus MERFISH data, we removed cells marked ‘ambiguous’ (as per the 
original study) and the gene Fos, which contained ‘NaN’ entries. In the 
DLPFC Visium data, we removed spots marked ‘ambiguous’ by the 
authors. In the CosMx data, there were two major connected regions 
of field of view, along with some field of views with scattered cells. We 
used the larger of these connected regions for analysis.

The DLPFC data include four samples (two pairs of ‘spatial repli-
cates’9) from each of three patients, resulting in 12 datasets. Following 
the usual practice in the field, we reported median statistics and box 
plots over these 12 samples. For the simulated data, we generated three 
replicates for each gene count condition (400, 600, 800, all 1,020) and 
reported the median values of ARIs over these, replicated for all tested 

methods. In all other datasets, the entire dataset was clustered and 
analyzed as a single dataset, after appropriate quality control.

Randomization was used in the simulated dataset: the genes to 
subset were picked randomly to generate 400, 600 and 800 gene 
sets of the full 1,020 gene set. No other randomization was used in 
this study (deterministic subsetting methods like HVGs were used for 
gene selection, and quality control metrics like NODG were used for 
cell subsetting).

No blinding was applicable in this study because no sample group 
allocation was performed.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
For the SlideSeq mouse cerebellum dataset, data were obtained from 
https://github.com/RubD/spatial-datasets/blob/master/data/2019_
slideseq_cerebellum/raw_data/slideseq_cerebellum_urls.txt. We used 
the BeadLocationsForR and MappedDGEForR.csv files. For Slide-seq 
v.2, we obtained the data from the Broad Institute Single Cell Portal 
at https://singlecell.broadinstitute.org/single_cell/study/SCP948. 
The MERFISH mouse hypothalamus data were obtained from https://
doi.org/10.5061/dryad.8t8s248. The Vizgen MERSCOPE data for the 
colon cancer 1 sample were obtained from https://info.vizgen.com/
ffpe-showcase. The CosMX SMI data of the human healthy colon was 
obtained from the NCBI Gene Expression Omnibus database (acces-
sion no. GSM7473683). The processed CODEX multiplexed imaging 
data of the healthy human intestine were downloaded from Hickey75. 
The mouse hippocampus data were collected using the VeraFISH assay 
(Veranome Biosystems) as described in the Methods, ‘Mouse hippo
campus VeraFISH data’. Data are available by running the command 
data(hippocampus) in the BANKSY package or directly from https://
github.com/prabhakarlab/Banksy/blob/bioc/data/hippocampus.rda. 
The 10x Visium data of the DLPFC were obtained from the spatialLIBD 
project (http://spatial.libd.org/spatialLIBD)71. The STARmap mouse 
visual cortex data were obtained from http://clarityresourcecenter.org.

Code availability
The Banksy R package can be obtained from https://github.com/ 
prabhakarlab/Banksy; the scripts to reproduce the R analyses can be 
found at https://github.com/jleechung/banksy-zenodo and require  
R v.3.5 or higher to function. The Python version is available from https://
github.com/prabhakarlab/Banksy_py, while the IPython notebooks to 
reproduce our analysis on Slide-seq v.1, Slide-seq v.2 and STARmap  
are available on the Banksy-manuscript branch of the BANKSY_py 
GitHub repository. The R and Python scripts to reproduce the analysis 
can also be found in the Zenodo archive at https://doi.org/10.5281/
zenodo.10258795 (ref. 76).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Detailed schematic to aid conceptual understanding of 
BANKSY. How BANKSY may lead to more accurate cluster assignments relative 
to non-spatial clustering (λ=0) by accounting for local microenvironmental 
information. (a) Cells near the decision boundary in own expression space 
alone get better separated in the neighbor-augmented space. We have used 
only the mean neighborhood expression for illustration purposes, but the same 
arguments apply to the AGF feature space. (b) Top – Schematic of tissue slice 
shows physical locations of two cell types (1 and 2) in two zones (A and B). Zone 
A contains mainly cell type 1 but some of cell type 2. Zone B contains mainly cell 
type 2 but some of cell type A. Bottom – Effect of increasing λ: at λ =0 (bottom 

left), only the cell’s transcriptome is used, making it identical to conventional 
unsupervised clustering analysis. As λ increases (bottom middle), subsets of cells 
in different environments with subtly different transcriptomes become easier 
to tease out. For instance, the blue circles – filled and empty – correspond to the 
same cell type in two different neighborhoods, possessing subtle transcriptomic 
differences. A similar effect is also shown for the green cell type. At higher 
lambdas (bottom right), a zone or spatial-domain segmentation effect occurs 
where zones representing different microenvironments are clustered separately 
and can comprise multiple cell types per zone.
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Extended Data Fig. 2 | BANKSY cell typing on a CosMX colon tissue dataset. 
a) Non-spatial and BANKSY UMAPs colored by their respective clusters, with cell 
type labels for BANKSY clusters. b) Spatial plots for the full dataset and a single 

ROI colored by BANKSY clusters. c) Spatial distribution of macrophages, with the 
Mac.2 cluster enriched in the submucosa. Violin plots show DE genes between the 
two macrophage subpopulations. Mac.1 n = 1177, Mac.2 n = 214.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Benchmarking of domain segmentation (a-c) and 
cell type clustering (d-f ) on data simulated from the STARMAP 1020 gene 
mouse visual cortex dataset. Data were simulated using scDesign2, with gene 
expression characteristics modeled after the 16 cell types in the STARmap data. 
Cell type compositions across the 7 domains (vertical strips) were modeled after 
cell type compositions in each domain in the STARmap data. (a) ARIs (median 
of 3 pseudorandom number generator seeds) of each method for domain 
segmentation as a function of gene number. The methods were used to generate 

domain labels by setting the number of requested clusters to 7. (b) Ground truth 
annotations for domain segmentation. (c) Qualitative comparisons across 
methods for a representative 1020 gene dataset. (d) ARIs (median of 3 seeds) of 
each method for cell type clustering as a function of gene number. The methods 
were used to generate cell type labels by setting the number of requested clusters 
to 16. (e) Ground truth annotations for cell type clustering. (f) Qualitative 
comparisons across methods for a representative 1020 gene dataset.
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Extended Data Fig. 4 | Comparing BANKSY and non-spatial clustering results 
on the VeraFISH data to MERINGUE, Giotto (HMRF) and BayesSpace (HMRF). 
The number of clusters was varied by adjusting parameters related to clustering 
resolution (number of nearest neighbors, k, in the graph for MERINGUE, and 
the number of clusters, N, for SpaGCN and FICT). Each column represents one 
clustering run for the indicated method at a given effective resolution. Blue 
arrows indicate the runs compared in Fig. 4. Green and red boxes indicate success 
and failure to identify the known neuronal or oligodendrocyte subclusters (Fig. 4; 
Supplementary Fig. 18). Conventional non-spatial clustering and MERINGUE (at 
any number of clusters) failed to separate both the oligodendrocyte subclusters 
and the neuronal subclusters. While Giotto separated the CA3 neurons (orange) 
from the somatosensory cortex neurons (brown), and at some resolutions was 

able to identify the fornix oligodendrocytes (dark green), it failed to identify 
the thalamic oligodendrocytes (purple) at all resolutions. Importantly, Giotto 
tended to cause clusters to form spatially disconnected groups of cells (‘patches’) 
that do not correspond to any known anatomical structures in the thalamus 
or hippocampal formation (dashed red boxes). BayesSpace merged several 
neuronal clusters: at N = 16 - 18, it merged the somatosensory cortex neurons 
with the CA3, CA1 and dentate gyrus neurons (blue clusters; all anatomical 
regions labeled in Fig. 4 in the main text), and at N = 19 - 20, it separated out 
the CA3 neurons, from the somatosensory cortex neurons, but merged the 
CA1 and dentate gyrus neurons. It also failed to separate out the thalamic 
oligodendrocytes from the fornix oligodendrocytes (red boxes around the  
dark green cluster).

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Comparing BANKSY and non-spatial clustering 
results on the VeraFISH data to SpiceMix (HMRF), SpaGCN and FICT 
(HMRF). Similar to Extended Data Fig. 4. As before, the number of clusters was 
varied by adjusting parameters related to clustering resolution. Each column 
represents one clustering run for the indicated method at a given resolution 
(controlled by the number of clusters input parameter, N). Blue arrows indicate 
the runs compared in Fig. 4. Green and red boxes indicate success and failure 
(respectively) to identify the known neuronal or oligodendrocyte subclusters 
(Fig. 4; Supplementary Fig. 18). SpiceMix correctly separated the thalamic and 
fornix oligodendrocytes, merged the somatosensory cortex neurons with either 

the CA3 neuron (orange clusters) or the dentate gyrus neurons (brown and light 
green clusters). SpaGCN was able to identify the CA3 neurons, but merged the 
somatosensory cortex neurons with cells in the dentate gyrus (brown cluster), 
and was unable to separate the thalamic and fornix oligodendrocytes (red boxed 
green clusters). FICT, like Giotto in Extended Data Fig. 4, tended to group cells 
into disconnected spatial patches that do not conform to known anatomical 
structures (dashed red boxes), and tended to merge the dentate gyrus, CA1, CA3 
and somatosensory cortex neurons into one or two clusters (light and dark blue 
clusters).

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Clustering performance of each method on all 12 
DLPFC datasets, quantified using 3 metrics. (a) Adjusted Rand index (ARI); (b) 
normalized mutual information (NMI); and (c) Matthews correlation coefficient 
(MCC). Significance is computed using paired one-sided Wilcoxon signed rank 
test (*: p≤0.05, **: p≤0.01, ***: p≤0.001). Exact p-values from left to right for (a) 

0.00024, 0.00024, 0.010, 0.00049, 0.00024, 0.72, 0.48, (b) 0.00024, 0.00024, 
0.0061, 0.00073, 0.00024, 0.81, 0.52, (c) 0.00024, 0.00024, 0.0034, 0.0061, 
0.00049, 0.79, 0.57. Center line: median, dotted line: mean, height of box: 
interquartile range (IQR), whiskers: 1.5 x IQR. In all boxes, n = 12 samples.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | STARmap mouse visual cortex 1020 gene dataset.  
(a) Top: cell-type annotations; Bottom: implied domain annotations. (b) Domain 
segmentation comparison (boxplot) on the STARmap 1,020-gene mouse visual 
cortex dataset, showing performance variability across random seeds. GraphST, 
STAGATE, SpaGCN and BANKSY were run with n = 11 different random seeds and 

ARI relative to the reference domain annotation was calculated in each case.  
(c) STARmap benchmark: alluvial plot showing correspondence between cluster 
labels assigned by spatial algorithms (left) and manual domain annotations 
(right). Correspondence is quantified using ARI, MCC and NMI.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | BANKSY tissue segmentation and community 
identification on CODEX multiplexed imaging data of the intestine.  
a). BANKSY UMAP and spatial plots colored by tissue segment annotations.  
b). BANKSY UMAP and spatial plots colored by BANKSY clusters. c). Non-spatial 
UMAP and spatial plots colored by non-spatial clusters. d). Comparison of 
BANKSY and non-spatial clusters with community domain annotations.  
e). Marker genes for smooth muscle and mature epithelial communities 

identified by BANKSY. Boxplots are colored as in (d). Center line: median, dotted 
line: mean, height of box: interquartile range (IQR), whiskers: 1.5 x IQR. CD66 
Annotation: n = 3179 (mean = 1.47, median = 0.636) vs 6189 (mean = 0.107,  
median = -0.167) cells, BANKSY: n = 3435 (mean = 1.70, median = 0.935) vs  
5232 (mean = -0.184, median = -0.249), aSMA BANKSY: n = 3222 (mean = 1.26, 
median = 1.04) vs 4826 (mean = 0.245, median = 0.138). All p-values < 2.2e-16.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | Benchmarking different integration methodologies. 
Performance of non-spatial clustering, BayesSpace and BANKSY with and without 
batch correction on joint clustering of spots from n = 12 DLPFC Visium datasets. 

ARI: adjusted Rand index. NMI: normalized mutual information. MCC: Matthew’s 
correlation coefficient. Center line: median, red dotted line: mean, height of box: 
interquartile range (IQR), whiskers: 1.5 x IQR.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | GPU runtimes of GraphST, SpaGCN, SpiceMix and STAGATE. All methods were benchmarked using a NVIDIA T4 GPU with 16GB of memory. 
Runtimes are shown up to the maximum cell number accommodated by each method.
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Software and code
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Data collection The VeraFISH data was collected using the VSA-1 Imager from Veranome Biosystems, and the collected images were processed throught the 
VeraWorks software (version 1.0_006) to reconstruct the locations of the barcode probes. Segmentation was performed using a Mask-RCNN 
neural network, also part of the same software.

Data analysis All BANKSY analysis was done with the Python (Python version 3.8, BANKSY version 1.1.0) or R (R version 4 (version >3.5), BANKSY version 
0.1.5). For solving the linear sum assignment problem via the Hungarian algorithm, we used scipy (version 1.6.2) in the Python version of 
BANKSY, and the RcppHungarian (version 0.3) in the R version. The Seurat analysis of the VeraFISH and MERFISH data was done with Seurat 
version 4.1.1. Other software versions were as follows: BayesSpace version 1.5.1, Spicemix latest version (Git commit id: aea69f8), Leiden 
clustering from  igraph version 1.2.11, scran version 1.18.7, SingleR version 1.4.1, Nebulosa version 1.0.2, SpaGCN version 1.2.2, Giotto 
version 1.1.0, BayesSpace version 1.5.1, STAGATE version 1.0.1, GraphST version 1.1.1, Harmony version 0.1.1, scDesign2 version 0.1.0, FICT 
version 1.0.0, MERINGUE version 1.0, peakRAM version 1.0.2 and CUDA version 12.0.  
 
The R package, as well as scripts to reproduce analyses, can be obtained from https://github.com/prabhakarlab/Banksy, while the python 
version is available from https://github.com/prabhakarlab/Banksy_py. The IPython notebooks to reproduce our analysis on Slide-seq v1, Slide-
seq v2 and STARmap are available on the Banksy-mansucript branch of the BANKSY_py Github repository. The scripts to reproduce the R 
analysis are available via https://github.com/jleechung/banksy-zenodo and via the Zenodo file repository: 10.5281/zenodo.1025879  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The SlideSeq mouse cerebellum data were obtained from https://github.com/RubD/spatial-datasets/blob/ master/data/2019_slideseq_cerebellum/raw_data/
slideseq_cerebellum_urls.txt. We used the BeadLocationsForR and MappedDGEForR .csv files. For Slide-seq V2, we obtained the data from the Broad Institute 
Single Cell Portal at  https://singlecell.broadinstitute.org/single_cell/study/SCP948.The MERFISH mouse hypothalamus data were obtained from https://
doi.org/10.5061/dryad.8t8s248. The Vizgen MERSCOPE data for sample `Colon cancer 1' was obtained from https://info.vizgen.com/ffpe-showcase. The CosMX SMI 
data of the human healthy colon was obtained from NCBI GEO database (accession GSM7473683). The processed CODEX multiplexed imaging data of the healthy 
human intestine were downloaded from https://datadryad.org/stash/dataset/doi:10.5061/dryad.pk0p2ngrf. The mouse hippocampus data were collected using the 
VeraFISH assay (Veranome Biosystems, LLC, Mountain View, CA, USA) as described in Section 8.7. The data are available by running the command 
data(hippocampus) in the R version of the BANKSY package or directly from https://github.com/prabhakarlab/Banksy/blob/bioc/data/hippocampus.rda. The 10x 
Visium data of the dorsolateral prefrontal cortex (DLPFC) were obtained from the spatialLIBD project (http://spatial.libd.org/spatialLIBD) (Pardo B., et al., 2022). The 
STARmap mouse visual cortex data were obtained from http://clarityresourcecenter.org.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No human data were collected as part of the study. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No human data were collected as part of the study. 

Population characteristics No human data were collected as part of the study. 

Recruitment No human data were collected as part of the study. 

Ethics oversight No human data were collected as part of the study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In the Slide-seq and Slide-seq v2 datasets, we used all cells (25,551 and 39496 cells respectively). In the MERFISH mouse hypothalamus data 
(Fig. 3a-e), all 11 Naive animals were used for analysis (485,657 cells). In the scRNA-seq study of mature oligodendrocytes in the mouse 
hypothalamus (Fig. 3f), all cells labeled 'Mature Oligodendrocytes' by the authors of the original study were used after standard QC cutoffs 
(cells with >20% mitochondrial genes or <1000 NODG, see Methods), resulting in 6611 cells. In the VeraFISH mouse hippocampus dataset (Fig. 
4a-r), we used all 10,994 cells in the dataset. For the corresponding scRNA-seq analysis, all cells with neuronal clusters corresponding to the 
relevant cortical and hippocampad CA3 regions (as labeled by the authors of the original study) were used, resulting in 2386 cells. Similarly, all 
cells labeled 'Oligo' were used for the oligodendrocyte analysis, resulting in 231 cells. In the MERSCOPE CRC data (Fig. 3f-h), we used all 
677,451 cells in the dataset. In the DLPFC Visium dataset we used all 12 samples in the dataset, as is standard in the benchmarking performed 
in the field. For the STARMAP dataset, we used all 1207 cells annotated by the authors. In the colon CosMx data, there were two major 
connected (contiguous) regions of fields of view (FOVs), along with some FOVs with scattered cells. We used the larger of these connected 
regions for analysis, resulting in 32,765 cells. In the CODEX data, we used all 33,958 cells from the ileum, all 25,403 cells from the right color 
region, and all 27,784 cells from the transverse colon region for tissue domain annotation from Donor B0012 and 38371 cells from from 
donor B006 in the ascending colon region for community annotation. In the simulated data, we generated datasets modeled of real STARMAP 
data (see Methods Section 8.15), and created 3 samples simulated for each gene-set condition (400, 600, 800 and 1020 genes), comprising 
4996 cells each. 

Data exclusions  In the mouse hypothalamus MERFISH data, we followed the authors of the original study to remove cells marked 'Ambiguous' by them and 
the gene Fos, which contained 'NaN' entries. In the DLPFC Visium data, we removed spots marked 'ambiguous' by the authors. In the CosMx 
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data, there two major connected regions of FOVs, along with some FOVs with scattered cells. We used the larger of these connected regions 
for analysis, discarding the smaller region and the FOVs with scattered cells. In all other analyses, we used all cells, and applied standard QC 
cutoffs. 

Replication The DLPFC data comprises 4 samples from each of 3 patients, resulting in 12 total datasets. following the usual practice in the field, we 
reported median statistics and boxplots over these 12 samples. For the simulated data, we generated 3 replicates for each gene count 
condition (400, 600, 800, all 1020) and reported median values of ARIs over these replicated for all tested methods. In all other datasets, the 
entire dataset was clustered and analyzed as a single dataset. 

Randomization In the simulated dataset, the genes to subset were picked randomly to generate 400, 600, 800 gene sets of the full 1020 gene set. No other 
randomization was used in this study (deterministic subsetting methods like highly variable genes were used for gene selection, and quality 
control metrics like number of detected genes were used for cell subsetting).

Blinding Blinding was not applicable to this study because no sample group allocation was performed. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals One six weeks old female mouse (C57BL/6NTac) was purchased from InVivos, Singapore, (https://www.invivos.com.sg/c57bl-6ntac/
#tab-60391), and was euthanized and dissected for removal of the brain immediately upon receipt (the mice were not housed and 
housing conditions do not apply). 

Wild animals No wild animals were used in the study. 

Reporting on sex Sex differences were not the aim of this study. Mouse brain data was only used to compare different spatial clustering algorithms. 

Field-collected samples No field collected samples were used for this study. 

Ethics oversight All animal procedures were done in accordance with the approved Institutional Animal Care and Use Committee (IACUC) protocol 
(Protocol #211580) obtained from the IACUC of the biomedical resource center. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes No plant data was collected or analyzed as part of this study. 

Seed stocks No plant data was collected or analyzed as part of this study. 

Authentication No plant data was collected or analyzed as part of this study. 

Plants
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