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Multi-omic profiling of clear cell renal 
cell carcinoma identifies metabolic 
reprogramming associated with disease 
progression
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Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable 
immune and metabolic heterogeneity. Here we perform genomic, 
transcriptomic, proteomic, metabolomic and spatial transcriptomic 
and metabolomic analyses on 100 patients with ccRCC from the Tongji 
Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes 
including De-clear cell differentiated (DCCD)-ccRCC, a subtype with 
distinctive metabolic features. DCCD cancer cells are characterized by 
fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake 
capability and a high proliferation rate, leading to poor prognosis. Using 
single-cell and spatial trajectory analysis, we demonstrate that DCCD is a 
common mode of ccRCC progression. Even among stage I patients, DCCD 
is associated with worse outcomes and higher recurrence rate, suggesting 
that it cannot be cured by nephrectomy alone. Our study also suggests a 
treatment strategy based on subtype-specific immune cell infiltration that 
could guide the clinical management of ccRCC.

Renal cell carcinoma (RCC), one of the top ten most prevalent malignan-
cies worldwide, predominantly manifests as clear cell RCC (ccRCC)1–3. 
Metabolic deregulation is a key characteristic of ccRCC4. To date, most 
clinical metabolomic studies have focused solely on metabolomic 
profiling5,6, leaving the relationship between genomic, epigenomic or 
other alterations and metabolic disorders largely unexplored. Recent 
single-cell and spatial sequencing technologies have provided a more 
intuitive map of the tumor microenvironment (TME) within ccRCC7–9. 
However, due to limited sample sizes, correlating these single-cell 

datasets with existing genomic or epigenomic molecular subtypes has 
been challenging. Therefore, a comprehensive dataset encompassing 
multi-omic data could bridge previous findings.

Results
Multi-omics characterization of Tongji Hospital RCC (TJ-RCC) 
cohort
In total, 100 treatment-naive ccRCC samples and 50 paired normal 
adjacent tissues (NATs) were profiled using whole-exon sequencing 
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cell composition of tumor tissues and did not consider tissue-specific 
expression patterns, especially signatures from macrophages18,19 and 
tumor cells. To overcome this, we generated a ccRCC-specific signature 
matrix from a public scRNA-seq dataset20 and identified 25 different cell 
types. This matrix was used to divide tumor samples into four immune 
subtypes (IM1–IM4; Extended Data Figs. 2a–c). We also performed 
xCell analysis and found that the two deconvolution pipelines gener-
ally produced similar output (Fig. 2a and Extended Data Figs. 2d,e).

IM1 was characterized by enriched endothelial (Fig. 2a) and stro-
mal cell signatures with a lack of immune cell signatures suggestive 
of immune exclusion. IM2 tumors also had enriched endothelial sig-
natures and were depleted of immune and stromal cell signatures. 
Among the four subgroups, IM3 tumors had the lowest level of endothe-
lial and stromal cell signatures but showed increased T cells and 
tumor-associated macrophages (TAMs) scores. IM4 tumors exhibited 
the highest level of stromal and TAM scores, together with intermediate 
T cell scores. Pathway analysis of differentially expressed genes (DEGs) 
revealed that acute inflammatory response and complement cascade 
had the highest activity in IM4 tumors (Extended Data Fig. 2f). No cor-
relation was observed between IM subgroups and the AA-associated 
mutational signature (Extended Data Fig. 2g). Immunohistochemistry 
(IHC) staining on selected samples from the four subgroups validated 
these TME features (Extended Data Fig. 2h).

Next, we investigated whether genomic and clinical characteristics 
correlated with immune subtypes. As shown in Fig. 2b, IM4 harbored 
the most arm-level SCNAs, followed by IM3, while somatic mutation 
burden (that is, single-nucleotide variants) showed no difference across 
four groups (Fig. 2b,c). Subgroups with more SCNAs were associated 
with higher tumor grade and more advanced-stage disease (Fig. 2d). 
These results were validated in the Cancer Genome Atlas kidney renal 
clear cell carcinoma (TCGA KIRC) cohort (Extended Data Fig. 3a–c).

Correlations between the IM subtypes and survival
Kaplan–Meier (KM) analysis revealed that IM2 patients had the best 
overall survival (OS) and progression-free survival (PFS), while IM4 
tumors were associated with poorer outcomes. Surprisingly, although 
IM3 contained more advanced-stage tumors, the prognosis of the IM3 
group was comparable to that of the IM1 group. Similarly, although IM3 
and IM4 groups in TCGA had comparable numbers of advanced-stage 
tumors, IM3 tumors were associated with better prognosis (Extended 
Data Fig. 3d).

Immune cell populations underpinning IM1–IM4
To further investigate the cell composition heterogeneity underlying 
immune subtypes, we performed single-nucleic RNA-seq (snRNA-seq) 
using 10 samples (4 IM1, 2 IM2, 2 IM3 and 2 IM4) and 10×-multiome 
(both snRNA-seq and single-nucleus ATAC sequencing (snATAC-seq)) 
on another 10 samples (1 IM1, 3 IM2, 4 IM3 and 2 IM4). After quality 
control, 97,978 single nuclei were classified into 5 major cell types and 
41 subclusters (Fig. 2e,f, Extended Data Fig. 3e and Supplementary 
Fig. 2). The distribution of immune cell clusters varied across immune 
subtypes, whereas endothelial cell subpopulations exhibited less 
variability (Fig. 2g and Extended Data Fig. 3f). Specifically, mono-
cytes, LILRB5+ macrophages (Mø03–LILRB5), terminally differenti-
ated effector memory or effector cells (TEMRA) and activated NK (aNK) 
cells predominated in IM1 and IM2 tumors. We also observed increased 

(WES), whole-transcriptome sequencing (WTS), proteome and 
untargeted metabolomics (both liquid chromatography–mass 
spectrometry (LC–MS) and gas chromatography–mass spectrom-
etry (GC–MS)) to identify the general molecular characteristics of 
the TJ-RCC cohort (Fig. 1a). Patient characteristics are summarized 
in Supplementary Table 1.

Genomic landscape
Previous studies identified VHL, PBRM1, BAP1, SETD2 and KDM5C as 
the most frequently mutated genes in ccRCC. Moreover, a mutation 
signature associated with aristolochic acid (AA) exposure, character-
ized by T>A transversions, has been identified in Romanian and Chinese 
cohorts10–12. The most frequently mutated genes in this study align with 
previous studies (Fig. 1b and Extended Data Fig. 1a)11–13. Co-occurrence 
analysis identified the following two mutually exclusive somatic muta-
tion pairs: PBRM1-BAP1 and BAP1-KDM5C (Extended Data Fig. 1b). 
Non-negative matrix factorization (NMF) analysis on a meta-cohort11,12 
identified seven somatic mutational signatures. All of these signatures 
were found in the TJ-RCC cohorts. Overall, 49 tumors were confirmed 
to have the AA-associated mutation signature (SBS22; Extended Data 
Fig. 1c–e). These tumors had more somatic mutations (Extended Data 
Fig. 1f), in agreement with previous studies10–12. However, frequently 
mutated genes did not show a significantly higher mutation rate in the 
AA-associated group (Fig. 1c). Consistently, the AA-associated signa-
ture was largely associated with mutations in genes excluding VHL, 
PBRM1, SETD2, BAP1 and KDM5C in ccRCC (Extended Data Figs. 1g,h). 
As major ccRCC driver mutations are not apparently associated with 
AA-dependent mutagenesis, our data suggest that the role of AA in 
ccRCC warrants reassessment.

Chromosome 3p loss was the most frequent event, followed by 
chromosome 5q gain, 14q loss, 7 gain and 9 loss, consistent with other 
ccRCC cohorts11–14 (Extended Data Fig. 1i).

Transcriptomic, metabolomic and proteomic analysis
Both transcriptomic and proteomic data correlated closely with 
somatic copy number alteration (SCNA) status (Extended Data Fig. 1j). 
Principal component analysis (PCA) demonstrated significant discrimi-
nation between tumors and NATs (Fig. 1d). Pathway analysis indicated 
activation of angiogenesis, glycolysis and immune-related pathways 
in ccRCC tissues, alongside inhibition of several metabolic pathways  
(Fig. 1e,f and Supplementary Table 2). The metabolome analysis results 
correlated with those from our transcriptomic and proteomic analyses 
(Fig. 1g), with exceptions such as glycerolipid metabolism and glu-
tathione (GSH) metabolism pathway.

To provide an overview of the metabolic dysregulation in 
ccRCC, we generated an integrated map of metabolites and meta-
bolic enzymes (Supplementary Fig. 1a). We found that the expression 
of enzymes involved in fatty acid biosynthesis was not changed in 
tumor tissues, which indicates that the accumulation of lipid droplets 
(LDs), a hallmark of ccRCC15, was potentially caused by decreased  
β-oxidation activity.

ccRCC can be classified into four immune subtypes
An immune subtype classifier was previously defined in ref. 13 to predict 
the prognosis of patients with ccRCC. This study and others used the sig-
nature matrices offered by xCell16 or CIBERSORTx17 to deconvolute the 

Fig. 1 | Multi-omics characterization of RCC cohort of TJ-RCC cohort.  
a, Study design and workflow of TJ-RCC. Sample selection for single nucleic and 
spatial profiling was based on the result of molecular subtyping. b, Genomic 
profiles of 100 TJ-RCC tumors. The entries in each column show the genomic 
profiles of the 100 TJ-RCC tumors. c, Mutation rate of frequently mutated 
genes in AA (n = 49) and non-AA (n = 441) groups. Mutation types are colored 
the same as those in b. P values were calculated by one-sided Fisher’s exact test 
and adjusted by the BH algorithm. d, PCA of global transcriptomic, proteomic 

and metabolomic difference between 100 tumors and 50 NATs. Shaded areas 
denote different groups. e,f, Bar plot showing ssGSEA-based pathway differences 
between 100 tumors and 50 NATs in transcriptome (e) and proteome (f). T values 
were calculated by a linear algorithm in Limma. g, Pathway-level differences in 
metabolite abundance between 100 tumors and 50 NATs. Metabolite pathways 
are collected in the KEGG pathway database. Size of each dot represents the total 
number of metabolites in the pathway.
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expression levels of FOS, FOSB and JUND in the endothelial cells of IM1 
and IM2 tumors (Extended Data Fig. 3g), and these genes can activate 
endothelial cell proliferation21. snATAC-seq data confirmed that FOS 
and FOSB had higher chromatin accessibility in endothelial cells from 
IM1 and IM2 samples (Extended Data Fig. 3h).

Additionally, IM3 tumors had increased CD8+ T cell infiltration. 
The proportion of terminal exhausted T cells was also higher in IM3 
tumors, followed by IM4 tumors, which was confirmed by bulk-seq data 
(Extended Data Fig. 4a,b). Substantial differences were observed in 
TAMs of IM3 and IM4 tumors. Proliferating macrophages (Mø–prolif), 
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GPNMB+ macrophages (Mø04–GPNMB), C3+ macrophages (Mø06–
C3) and GBP1+ macrophages (Mø07–GBP1) were also enriched in IM3 
tumors (Fig. 2g). Pathway analysis revealed enhanced interferon-γ 
response and regulation of T cell cytotoxicity in these clusters 
(Extended Data Fig. 4c).

IGF1+ macrophages were more abundant in IM4 tumors. Pathway 
enrichment analysis demonstrated that the growth factor complex 
pathway was enriched in this subpopulation (Fig. 2g and Extended Data 
Fig. 4c). IGF1 has been reported to promote the survival and migration 
of fibroblasts22, potentially contributing to fibroblast accumulation 
in ccRCC (Extended Data Fig. 4d–f). Interestingly, the abundance of 
IGF1+ macrophages was positively correlated with the fibroblast score 
but not with other stromal cells, such as pericytes (Extended Data  
Fig. 4d,f,g). As shown in Extended Data Fig. 4h, there was an obvious 
spatial boundary between the fibroblast-enriched and pericyte/smooth 
muscle-enriched regions. Subsequent immunofluorescence staining 
revealed that IGF1+ macrophages (F13A1+) mainly localized in fibro-
blast (PDGFRA+)-enriched regions, supporting our hypothesis that 
IGF1+ macrophages promote the accumulation of fibroblasts (Fig. 2h 
and Extended Data Fig. 4i) in IM4 tumors. In contrast, although ACKR1+ 
endothelial and GJA5+ arterial endothelial also showed a positive cor-
relation with fibroblasts in bulk RNA-seq, these cells were scattered 
on the immunofluorescence or IHC slices (Extended Data Fig. 4f,i–k).

Correlating immune and metabolic heterogeneity in TME
To investigate the role of metabolism in immune subtype stratification, 
we evaluated metabolic-related Gene Ontology (GO) terms per sample. 
Unsupervised clustering revealed four different clusters of metabolic 
gene expression (Extended Data Fig. 5a). Cluster 1 involves collagen and 
proteoglycan metabolism, potentially associated with extracellular 
matrix remodeling. Cluster 2 is related to steroid hormone metabolism. 
The activity of both cluster 1 and cluster 2 mainly arose from interstitial 
and endothelial cells (Extended Data Fig. 5b). Both cluster 1 and 2 were 
enriched in IM1 and IM4 tumors. Cluster 3 is related to fatty acid and 
amino acid metabolism and was enriched in IM2 and IM3.

Cluster 4 is related mainly to nucleoside metabolism (Extended 
Data Fig. 5a). Nucleoside metabolism alone could distinguish IM3 
samples from other subtypes (Fig. 3a and Extended Data Fig. 5c). 
Conjoint analysis revealed enhanced cytidine, pyrimidine and other 
nucleoside metabolism-related pathways in IM3 samples at both 
the transcriptome and proteome levels (Fig. 3band Supplementary  
Table 3). Subsequently, correlation analysis between the single sample 
gene set enrichment analysis (ssGSEA) score of Teff cells and pyrimidine 
metabolism in the TCGA KIRC dataset suggested that increased pyrimi-
dine/cytidine metabolism activity was correlated with increased CD8+ 
T cell infiltration and poor prognosis, aligning with our findings in the 
TJ-RCC cohort (Fig. 3c,d). Additionally, increased pyrimidine derivates 
in IM3 samples were observed in the metabolome data (Fig. 3e).

However, although IM3 is a CD8+ T cell-infiltrated subgroup, IM3 
tumors still have a better prognosis than IM4 tumors. These results sug-
gest that CD8+ T cell infiltration may limit tumor progression in ccRCC.

To substantiate our findings, we performed spatial transcriptom-
ics (ST) and metabolomics profiling on 12 tumor sections (4 IM1, 4 IM2, 
3 IM3 and 1 IM4) and 2 NAT controls. High guanine and hypoxanthine 
signals were detected in a CD8+ T cell-infiltrated sample (R29_T) that 
belongs to the IM3 group (Fig. 3f,g and Extended Data Fig. 5d). In con-
trast, in R51_T, also an IM3 sample with focal lymphocytic infiltration 
(Extended Data Fig. 5e), only weak signals of guanine and hypoxanthine 
were detected in the non-TIL-infiltrated area (Fig. 3f,g). These find-
ings indicated the intratumoral heterogeneity (ITH) of ccRCC and a 
potential correlation between pyrimidine derivates and TILs. This 
hypothesis was further confirmed in another sample with focal CD8+ 
T cell infiltration (Fig. 3h–l).

IM4 tumors show distinctive metabolic features and have poor 
outcomes
Cluster 3, which is downregulated in the IM4 subgroup (Extended Data 
Fig. 5a), includes various metabolic pathways, involving fatty acid and 
amino acid metabolism. These pathways are typically downregulated 
in ccRCC13,14,23, suggesting enhanced metabolic deregulation in IM4 

Fig. 2 | TME-based molecular subtyping of ccRCC. a, Integrative classification 
of 100 tumor samples. The heatmap shows DEGs, mRNA and protein level 
pathway scores calculated by the ssGSEA algorithm, ssGSEA-predicted cell 
abundance and xCell-predicted cell abundance, sequentially. DEGs were 
defined as genes differentially expressed in one IM subtype versus all other IM 
subtypes. Each matrix of 100 tumor samples was transformed into row z score 
before visualization, respectively. b,c, Arm-level SCNAs and nonsynonymous 
mutational burdens in immune subtypes. P values were calculated by two-sided 
Tukey’s test. IM1, n = 22; IM2, n = 27; IM3, n = 36 and IM4, n = 15. The central line 
of the box represents the median value, box limits indicate the IQRs and the 
whiskers extend to 1.5× IQR. d, Difference in tumor grade and stage among 
the four immune subtypes. e, UMAP plot of snRNA-seq data colored by major 
cell types (left) and immune subtypes (right). f, Bar plot of the proportions 
of major cell types per sample. g, Heatmap of OR showing differences in cell 

abundance between immune subtypes. P value was calculated by one-sided 
Fisher’s exact test and corrected by BH algorithm. OR > 1.5 and adjusted P value 
(Padj) < 0.05 indicated that this subpopulation was more likely to distribute in 
this immune subtype, whereas OR < 0.5 and adjusted P value < 0.05 indicated 
that it was preferable not to distribute in this immune subtype. Innate immune 
subclusters enriched in IM1/IM2 are marked with red boxes. h, Multicolor 
fluorescence on W5_T. CD31 marks blood vessels, PDGFRA marks fibroblasts, 
ACTA2 marks smooth muscle and pericytes and F13A1 marks IGF1+ macrophages. 
The experiment was repeated three times. TMB, tumor mutation burden; aNK, 
activated natural killer; cDC, conventional DC; DC, dendritic cell; MAIT, mucosal-
associated invariant T cells; mDC, mature DC; Mo, monocyte; Mø, macrophage; 
pDC, plasmacytoid DC; TH, T helper cell; Tex, exhausted T cell; Tgd, gamma delta  
T cell; IQR, interquartile range.

Fig. 3 | Correlation between immune and metabolic heterogeneity in the 
TME. a, Heatmap of ssGSEA-based pyrimidine-related pathway scores. Pathway 
scores were calculated using a TPM matrix of bulk RNA-seq data from 100 
tumor samples. b, Visualization of differential GO terms (ssGSEA) between IM3 
tumors and other tumors of TJ-RCC. T values were calculated by a linear model 
of Limma and extracted to visualize the relationship between transcriptome 
and proteome. Each dot represents a single pathway. GO terms associated with 
cytidine, pyrimidine or nucleoside are labeled in specific colors. c, KM plot of 
survival data stratified by higher or lower pyrimidine metabolism activity in 
TCGA KIRC. Pathway scores of bulk RNA-seq data were estimated per sample  
by ssGSEA algorithm. P value was calculated by the log-rank algorithm.  
d, Pyrimidine and cytidine metabolism activity are positively associated to Teff cell 
abundance. Pyrimidine and cytidine metabolism pathway scores were calculated 
in the TPM matrix of TCGA KIRC using the ssGSEA algorithm. Teff abundance was 

obtained from the results of xCell. Correlation coefficient was calculated  
using Pearson’s correlation algorithm. P values were from two-sided Student’s  
t test. The red line shows the linear interpolation of the data. e, Heatmap showing 
enrichment of given metabolites in IM3. P values were calculated by comparing 
all expression values of each metabolite in a subgroup to all other values of 
that metabolite using two-sided Wilcoxon t test and then adjusted using the BH 
algorithm. ****Padj < 0.0001, ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05. f, Expression 
of CD8A in ST data of given slices. g,j, Spatial metabolome slice colored by 
metabolites abundance. h, Immunohistochemical staining of CD8A and CD3D 
on Y7_T. Experiment was repeated three times. i,k, Spatial transcriptome of Y7_T 
colored by CD8A expression level (i) and Seurat clusters (k). l, Pathway enrichment 
of spatial transcriptome shows that clusters 3 and 4 have higher pyrimidine 
metabolism activity. Pathway score was calculated by the ssGSEA algorithm.  
The density plot is colored by clusters on the ST profile in k.
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samples. To systemically investigate these differences, we identified 
DEGs between IM4 and other tumor subgroups (|log2 fold change  
(FC)| >1, adjusted P < 0.05). In total, 853 DEGs were clustered into four 
gene modules using unsupervised analysis (Fig. 4a).

The expression of genes in modules 1 and 2 was higher in 
IM4 tumors than in other tumor samples belonging to IM1–IM3.  

Notably, NATs had the highest expression level of module 1 genes. 
Analysis of snRNA-seq data of NATs revealed that module 1 genes were 
expressed in tubular cells except for proximal tubular cells, and mod-
ule 2 signatures were derived mainly from collecting ducts (Extended 
Data Fig. 6a–d), elucidating the recent finding that a collecting duct 
signature was related to poor prognosis7.
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Module 3 genes, prominently expressed in normal proximal 
tubules and downregulated in non-IM4 tumors, were further decreased 
in IM4 tumors (Fig. 4a). These genes are enriched in the metabolism of 
fatty acids, amino acids and carbohydrates (Fig. 4b). Decreased activ-
ity of these pathways has been described as a feature of ccRCC13,14,23. In 
contrast to the genes in module 3, genes in module 4 were upregulated 
in non-IM4 tumors but downregulated in IM4 tumors to below NAT 
levels (Fig. 4a). The ccRCC oncogene, HIF2A, is also included in this 
module. These genes are enriched in multiple biosynthesis pathways, 
including the fatty acid biosynthesis pathway (Fig. 4b), leading to LD 
accumulation in tumor cells15. Notably, module 4-related metabolic 
dysregulations were described as a feature of ccRCC and also correlated 
with tumor progression4,24. Because these features are largely inhibited 
in IM4 tumors, module 4-related features may have dual effects on 
ccRCC. Validation via Oil red O (ORO) staining of 20 randomly selected 
TJ-RCC cohort samples revealed LD accumulation in non-IM4 samples 
exhibiting a ‘clear cell’ phenotype, but almost no LDs were observed in 
IM4 samples, aligning with transcriptomic features (Fig. 4c).

Metabolic reprogramming in IM4 tumors was also confirmed by 
metabolomic analyses. Levels of metabolites related to alanine, aspar-
tate and glutamate metabolism and arginine biosynthesis were lower 
in IM1–IM3 tumors than in NATs. These biosynthesis pathways were 
also downregulated (albeit to a lesser extent) in the IM4 group, corre-
sponding to our transcriptomic findings (Fig. 4d,e). Limited arginine 
biosynthesis indicated a limited urea cycle in IM4 tumors (Fig. 4f,g). 
Notably, urea cycle dysfunction in IM4 tumors did not seem to depend 
on enzyme dysregulation, suggesting unknown mechanisms (Fig. 4g).

In contrast, GSH metabolism was activated in IM4. Both GSH and 
oxidized GSH (GSSG) are highly enriched in IM4 tumors. These mole-
cules could consume reactive oxygen species (ROS) in tumor cells, lead-
ing to a higher proliferation rate and drug resistance25. Unlike GSH-high 
triple-negative breast cancer26, IM4 tumors do not show elevated levels 
of substrates of GSH biosynthesis (Fig. 4f,g and Extended Data Fig. 6e). 
In addition, the majority of enzymes involved in GSH biosynthesis were 
not dysregulated in IM4 tumors. Only GGT1, the enzyme that cata-
lyzes the transfer of the glutamyl moiety of GSH, was downregulated  
(Fig. 4g). Although the levels of ornithine, which make up part of the 
urea cycle, were decreased in IM4 tumors, levels of two ornithine deri-
vates, spermine and spermidine, were still largely increased (Fig. 4f,g); 
both have been associated with cancer cell proliferation27,28.

Given the downregulation of metabolic energy generation path-
ways and accelerated proliferation rate, IM4 tumors likely have alter-
native energy sources. The expression of genes encoding glucose 
transporters (SLC2A1 and SLC2A3), glutamine transporters (SLC1A5 
and SLC38A5), a branched-chain amino acid transporter (SLC7A5) 
and a thiamine transporter (SLC35F3) was upregulated (Fig. 4h), 
potentially leading to increased nutrient uptake in IM4 tumors. The 
level of a new nicotinamide mononucleotide transporter, SLC12A8 
(refs. 29,30), was also increased in IM4 tumors (Fig. 4h). Although IM4 
tumors may uptake additional glucose, only the glycolytic fermenta-
tion process was enhanced, while gluconeogenesis was inhibited in 
this group (Fig. 4i).

In summary, the characteristics of IM4 tumors include increased 
nutrient uptake, decreased levels of ROS and LDs, low metabolic activ-
ity and a higher proliferation rate (Fig. 4j). Because ccRCC is character-
ized by LD accumulation in cancer cells, we named this process de-clear 
cell differentiation (DCCD) of ccRCC. Furthermore, as IM4 tumors have 
completed this transformation process, we termed them DCCD-ccRCC.

Because patients with primary tumors diagnosed at early stages 
(stages I and II) do not receive postoperative drug treatment31, we asked 
whether patients with early-stage DCCD tumors had poorer prognosis. 
Strikingly, among patients with ccRCC restricted to the kidney (stages 
I and II), those with primary tumors stratified as DCCD tumors have 
significantly worse OS and PFS (Fig. 4k). This indicated that surgery 
alone is unlikely to cure these patients. Our data suggest that patients 
with localized DCCD-ccRCC should be identified and offered further 
treatment after surgery.

IM subtype is associated with treatment response
To identify potential treatment plans for patients with DCCD (IM4) 
and non-DCCD (IM1–IM3) ccRCC, we analyzed bulk RNA-seq data from 
three clinical trials. Our aim was to establish whether these subgroups 
were associated with response to specific treatments.

In the IMmotion 151 trial32, the combination of atezolizumab (pro-
grammed cell death 1 ligand 1 (PD-L1) inhibitor) and bevacizumab 
(vascular endothelial growth factor (VEGF) inhibitor) improved the 
prognosis of IM3 and DCCD (IM4) groups compared to sunitinib (recep-
tor tyrosine kinase inhibitor (TKI); Fig. 5a–c). We could not clarify 
whether patients benefited from either atezolizumab, bevacizumab 
or both.

Fig. 5 | IM subtype is associated with treatment response. a,d,g, Heatmap 
showing expression level of signature genes in IMmoton 151 (a), JAVELIN (d) and 
CheckMate (g). Expression were normalized into row z score based on the mean 
value and s.d. across four IM subgroups. b,e,h, KM plot of immune subtypes in 
given cohorts IMmoton 151 (b), JAVELIN (e) and CheckMate (h). The global P value 
was calculated by the log-rank algorithm. Pairwise comparison was performed 
when the global P value < 0.05. P values of pairwise comparison were corrected 
by the BH algorithm. ****Padj < 0.0001, ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05. 
atezo_bev, atezolizumab plus bevacizumab; combo, avelumab plus axitinib. 

c,f, Forest plot for PFS hazard ratios in patients treated with combined therapy 
versus sunitinib; IMmoton 151 (c) and JAVELIN (f). The numbers next to the forest 
plot indicate the number of participants in each group. Centers for the error bars 
represent the hazard ratio and error bands represent 95% confidence intervals 
(CIs) of hazard ratios. i, Forest plot for OS and PFS hazard ratios in patients 
treated with nivolumab versus everolimus (left, OS and right, PFS). The numbers 
next to the forest plot indicated the number of participants in each group. 
Centers for the error bars represent the hazard ratio and error bands represent 
95% CIs of hazard ratios.

Fig. 4 | The DCCD subtype exhibits dramatic metabolic disorders and 
worse outcomes in ccRCC. a, Unsupervised clustering of upregulated and 
downregulated genes in DCCD tumors. Z scores were calculated based on  
the mean value and s.d. of the TPM matrix across 100 tumors and 50 NATs.  
b, Enriched GO terms in module 3 and module 4 genes. Gene number involved  
in each GO term is labeled in each bar. c, ORO staining on given tumor samples  
to visualize LDs. d,e, Enrichment analysis of differential metabolites in IM4  
versus IM1–IM3 (d) and IM1–IM3 versus NATs (e). The x axis represented the 
pathway impact calculated by MetaboAnalyst. Dot size represents the pathway 
impact. P values from the global test were adjusted by the BH algorithm.  
f, Metabolites enriched or absent in IM4. P values were calculated by comparing 
the selected subgroup to all the other samples using two-sided Wilcoxon  
t test and then adjusted using the BH algorithm. ****Padj < 0.0001, ***Padj < 0.001, 
**Padj < 0.01, *Padj < 0.05. g, Summary of key metabolic changes in IM4 versus 

IM1–IM3. Abbreviations of metabolites are detailed in Supplementary Table 4. 
h, Upregulated transporters at mRNA level in IM4. P values were calculated by 
comparing all expression values of each gene in a subgroup to all other values 
of that gene with two-sided Wilcoxon t test and then adjusted using the BH 
algorithm. ****Padj < 0.0001, ***Padj < 0.001, **Padj < 0.01, *Padj < 0.05. i, Pathway 
enrichment analysis of bulk transcriptome using the ssGSEA algorithm. T value 
was calculated with the Limma package by comparing one subtype to all other 
samples. A negative T value implies a downregulated pathway score. The dot 
size is defined by the absolute value of T value. j, Ideogram of key changes that 
participate in carcinogenesis and tumor progression. k, KM in early (left) and 
advanced (right) ccRCC, grouped by immune subtypes. The global P value was 
calculated by the log-rank algorithm. Pairwise comparison was performed 
when the global P value < 0.05. Square brackets show the results of pairwise 
comparison.
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In another phase III clinical trial, JAVELIN33, DCCD patients exhib-
ited the poorest prognosis, independent of therapy type, which rep-
licates the observation from IMmotion 151 (Fig. 5d,e). Compared to 
sunitinib alone, combination therapy with avelumab (PD-L1 inhibitor) 
and axitinib (VEGFR inhibitor) improved PFS in IM1, IM3 and IM4 groups 
(Fig. 5f). The IM1 group, which was characterized by high expression 
of angiogenesis-related genes, could therefore benefit from avelumab 
plus axitinib treatment, but not atezolizumab and bevacizumab  
(Fig. 5c,f). Notably, both IMmotion 151 and JAVELIN revealed that the 
combination of anti-angiogenic therapies with immune checkpoint 
blockade did not benefit IM2 patients.

In a meta-checkmate cohort with combined RNA-seq data of 
CheckMate 009, 010 and 025 (ref. 34), patient stratification impacted 
OS but not PFS in nivolumab-treated metastatic RCC (mRCC) patients 
(Fig. 5g,h). Notably, in the everolimus (mechanistic target of rapa-
mycin kinase (mTOR) inhibitor)-treated group, patients with IM3 
tumors had the shortest OS and PFS. Comparatively, treatment with 
nivolumab (PD-1 inhibitor) extended OS times versus everolimus 
(mTOR inhibitor) in IM2 and IM3 patients (Fig. 5i). Compared to 
everolimus, nivolumab may be a better choice for second-line treat-
ment for IM2 and IM3 patients.

Subcluster level shift from non-DCCD to DCCD in ccRCC
ssGSEA analysis revealed intermediate IM2 and IM4 scores in IM1 
and IM3 samples (Extended Data Fig. 7a,b), which was replicated 
in TCGA KIRC samples, where signatures were inversely correlated 
across IM1 and IM3 samples (Pearson’s r = −0.725; Fig. 6a), support-
ing the hypothesis of continuous DCCD in ccRCC. Therefore, we 
named these samples IM2-like or IM4-like according to the dominant 
gene signature and defined the DCCD score as the D value of IM4 
and IM2 scores (Fig. 6a,b). KM analysis demonstrated that patients 
with IM4-like tumors had better OS and PFS than those with IM4 but 
poorer than those with IM2 and IM2-like tumors, which had similar 
outcomes (Fig. 6c and Extended Data Fig. 7c). Despite significant TME 
differences between IM1 and IM3 tumors (Fig. 2a and Extended Data 
Fig. 3a), their outcomes were comparable (Extended Data Fig. 3d). 
Given that IM2 and IM2-like groups primarily contained low-grade, 
early-stage tumors (Extended Data Fig. 7d), we analyzed stage I cases 
from TCGA KIRC. Even among these early-stage cases, a higher IM4 
score was associated with poor prognosis (Extended Data Fig. 7e), 
suggesting that the degree of DCCD progression might determine 
outcomes for patients with ccRCC.

We also extended this adjusted classification strategy to clinical 
trial datasets. In patients treated with TKI alone, this classification 
showed similar but relatively weaker predictive ability than that in 
TCGA (in both IMmotion32 and JAVELIN33 cohorts), possibly because 
these cohorts included only patients with metastatic RCC (Extended 
Data Fig. 8a,c), and a similar phenomenon was observed in advanced 
TCGA cases (Extended Data Fig. 7e). However, in immune checkpoint 
blockade-treated groups, it failed to improve predictive value over the 
initial IM classification (Extended Data Fig. 8a–g), possibly because 
the IM classification system considered signatures from the entire 

microenvironment while adjusted classification focused on features 
of cancer cells.

Subsequent analysis of snRNA-seq data revealed the same inverse 
correlation between IM2 and IM4 scores observed in the bulk-seq data 
(Fig. 6d,e and Extended Data Fig. 9a–d). Therefore, we divided single 
cancer cells into IM2-like or IM4-like phenotypes based on the DCCD 
score. Interestingly, the proportion of IM2-like or IM4-like cells corre-
lated with the DCCD score at the bulk-seq level (Fig. 6f and Extended 
Data Fig. 9e), indicating that the DCCD process reflects the accumula-
tion of IM4-like cancer cells inside tumors.

Because DCCD-ccRCC commonly contains more arm-level SCNAs 
than IM1–IM3 tumors (Fig. 4a), we asked whether SCNAs drive the DCCD 
process. In both the TJ-RCC and TCGA KIRC cohorts, the number of 
SCNA events exhibited the same trend—IM4>IM4-like>IM2-like≈IM2. 
Progression-related SCNA events occurred in up to 75% of IM4 tumors 
(Extended Data Fig. 10a,b). In snRNA-seq data, subclonal SCNAs could 
be found only in two tumors with part of malignant cells exhibiting 
DCCD features (partial DCCD; Fig. 6g and Extended Data Fig. 10c). 
Among 12 ccRCC samples with spatial profiles, partial DCCD was 
found in two samples (Fig. 6h,i and Extended Data Fig. 10d,e). Nota-
bly, Y7_T, exhibiting IM2 features in both bulk-seq and snRNA-seq data  
(Fig. 6f), showed a subclonal DCCD shift in the visium slice, reflecting 
DCCD-induced ITH. The non-DCCD region exhibited a classical ‘clear 
cell’ phenotype (Fig. 6h and Extended Data Fig. 10d), corresponding to 
that observed via ORO staining (Fig. 4c). Loss of chromosome 9 could 
be found in the DCCD region of X98_T, consistent with snRNA-seq data 
(Fig. 6g,j and Extended Data Fig. 10h). In contrast, no subclonal SCNAs 
could be observed in Y7_T (Extended Data Fig. 10f,g). Taken together, 
these results indicated that there was no absolute correlation between 
SCNA events and DCCD. Spatial metabolome analysis showed fewer 
fatty acids, especially long-chain fatty acids, in DCCD regions, regard-
less of the presence of subclonal SCNAs (Fig. 6k,l and Extended Data 
Fig. 10i,j), leading to decreased LD accumulation in these regions.

Establishing the trajectory toward DCCD
To gain deeper insight into the transformation process toward DCCD, 
we constructed a trajectory using snRNA-seq data. IM4-like single cells 
were centered at the end of the trajectory. An increase in the IM4 score 
and a decrease in the IM2 score were observed throughout the pseudo-
time (Fig. 7a,b). Subsequently, we extracted differentially expressed 
transcription factors at both the bulk and snRNA levels, resulting in 83 
differentially expressed transcription factors grouped into two clusters 
(Fig. 7c). HNF1A, HNF1B, necessary for renal tubule development35,36 
and associated with ccRCC oncogenesis37, and HNF4A, a regulator of 
HNF1A38, along with PPARA, the primary transcription factor main-
taining metabolic features of normal kidney proximal tubules39, were 
involved. Their downregulation alongside the trajectory may be associ-
ated with the inhibition of proximal tubule-specific metabolic features 
in DCCD tumors (Fig. 4a). The androgen receptor is also downregulated 
in IM4-like single cells. Its loss in ccRCC is related to a higher lymph node 
metastasis rate40. HIF1A, a conventional tumor suppressor of RCC41, is 
significantly elevated during the later stages of differentiation toward 

Fig. 6 | Subcluster level shift from non-DCCD to DCCD could be observed 
in ccRCC. a, Heatmap of IM4 and IM2 signature genes in IM1 and IM3 tumors. 
Samples are ranked by DCCD score. b, IM1 and IM3 groups have intermediate 
DCCD scores, and P values were calculated by Tukey’s test. IM1, n = 93; IM2, 
n = 159; IM3, n = 74 and IM4, n = 116. In boxplots, the central line represents the 
median value, box limits indicate the IQRs and the whiskers extend to 1.5× IQR. 
c, KM plot of survival data from TCGA KIRC. IM1 and IM3 samples were classified 
into IM4-like or IM2-like according to a positive or negative DCCD score. P value 
was calculated by the log-rank algorithm. P values of pairwise comparisons were 
corrected by the BH algorithm. ****Padj < 0.0001, ***Padj < 0.001, *Padj < 0.05.  
d, UMAP plot of snRNA-seq of malignant cells colored by sample IDs. e, UMAP 
plot of snRNA-seq colored by IM2 score (top) and IM4 score (bottom). f, Bar plot  

showing proportions of IM2-like and IM4-like cancer cells per sample. All 
malignant cells were mapped to IM2-like and IM4-like cells according to the 
DCCD score. g, Single-nucleic level SCNA in malignant cells of X98_T. Loss of chr 
9 could be observed only in IM4-like malignant cells of X98_T. h, H&E staining 
of X98_T. The slice is used for 10× visium profiling. i, Spatial signature scores in 
visium data of X98_T. j, Visualization of the chr 9 score on the visium slide shown 
in 6 h. Dots are colored by chr 9 score. k, Differential metabolites between IM2-
like and IM4-like regions in Y7_T. Metabolites belonging to carboxylic acids, fatty 
acyls and glycerolipids were colored according to the metabolite class. The m/z 
values were labeled to differentially distributed fatty acyls. l, Spatial distribution 
of lipid metabolites in Y7_T. Chr, chromosome; H&E, hematoxylin and eosin.
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Fig. 7 | Establishing the trajectory of the DCCD with multi-omics data.  
a, Diffusion map of single malignant cells colored by pseudotime. b, IM2 and 
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d,f, Spatial trajectory of transformation from IM2-like to IM4-like patterns in  
Y7_T (d) and X98_T (f). The plots are colored by Seurat clusters, and the arrows 
show the transformation direction. e,g, Expression of TFs changes along the 
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Samples are ranked by DCCD score. DFC, diffusion component.
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DCCD. Upregulation of HIF1A has been linked to lower drug response 
rates in mRCC42. The spatial trajectory of the two samples aligns with 
the results from the snRNA-seq data (Fig. 7d–g).

Because partial-DCCD samples are mixtures of IM2-like and 
IM4-like cells, it is possible to establish a trajectory with bulk-seq data 
based on the DCCD signature score. Therefore, we generated the trajec-
tory using Monocle 2 with the DCCD score as pseudotime. Continuous 
changes in key transcription factors involved in DCCD were highly 
consistent between bulk-seq and snRNA-seq data (Fig. 7h,i), suggesting 
that DCCD is a widespread, continuous biological process in ccRCC.

ChromVAR deviation analysis of snATAC-seq data revealed the 
most differentially activated transcription factors between DCCD 
and non-DCCD populations. As shown in Fig. 8a, AP-1 transcription 
factor subunits were ranked at the top, followed by BACH1, BACH2 
and members of the hepatocyte nuclear factor family. These findings 
were confirmed with motif footprinting analysis (Fig. 8b). Integrated 
multi-omics data also revealed asynchronous phenomena between 
the transcriptome and chromatin availability. For example, H46_T is 
an androgen receptor low-expressing (ARlow) tumor according to both 
bulk-seq and snRNA-seq. However, motif footprinting analysis revealed 
that the androgen receptor binding site of H46_T showed the highest 
availability across all samples (Fig. 8c–e).

Despite the sample-specific peak-to-gene linkage features (Sup-
plementary Fig. 3a), several elements were observed across multiple 
samples. We identified a peak located approximately 30k upstream 
from the promoter of LRP2 that was positively correlated with the 
expression of LRP2 (Supplementary Fig. 3b,c). We also identified sev-
eral peaks correlated with CEBPB expression in cancer cells, which 
may be enhancers that promote the expression of CEBPB (Fig. 8f,g). 
Finally, scMEGA analysis allowed us to construct separate gene regu-
latory networks for DCCD and non-DCCD cancer cells (Fig. 8h and 
Supplementary Figs. 4 and 5). Taken together, these data provided 
insights into the transcription factor regulatory networks involved in 
the progression of ccRCC.

Discussion
The integration of multi-omics data catenates multilevel ITH of 
ccRCC, revealing the interplay between genomic, transcriptomic and 
metabolic regulation. In this work, we identified a distinct subgroup, 
DCCD-ccRCC. We also performed spatial metabolomics profiling, 
revealing that partial metabolic reprogramming contributes to ITH 
in ccRCC.

Through a TME-based molecular stratification system, we identi-
fied a distinct subtype, DCCD-ccRCC, distinguished by absent LDs in 
cancer cells. LD accumulation has been documented as a protective 
factor against lipotoxicity and endoplasmic reticulum (ER) stress in 
malignant cells15,43–46. However, results from these cell line-based stud-
ies contradict real-world observations from large sequencing cohorts. 
Both HIF2A and PLIN2, the key proteins involved in the accumulation of 
LDs in RCC, are associated with good prognosis in clinical cohorts47,48. 
In this study, our analysis revealed that HIF2A-dependent LD accumu-
lation occurs mainly in the IM2 subtype or IM2-like region of ccRCC, 
reconciling this contradiction. Based on multilevel profiles, we propose 
that HIF2A–PLIN2 axis-dependent LDs are essential for restricting ER 
stress and providing energy via the FAO (fatty acid oxidation)/AMPK 
(AMP-activated protein kinase) pathway in early-stage cancer cells. This 
could explain why these tumors commonly have a higher response rate 
to TKI treatment. In contrast, DCCD tumors, characterized by enhanced 
nutrient uptake, rely less on LDs for energy. Because DCCD signature 
is highly continuous at both transcriptomic and spatial levels and is 
not SCNA-dependent, these findings raise the speculation that DCCD 
is induced by the processes involved in local TME remodeling, such as 
hypoxia, but additional evidence is needed.

DCCD in ccRCC is related to poor outcomes in all clinical cohorts 
involved in this study. Even for patients with stage I DCCD tumors, 

nephrectomy seems insufficient to cure the disease. This discovery 
challenges the present therapeutic schedule for ccRCC. A potential 
explanation is that DCCD tumors have increased metastatic potential, 
seeding to adjacent tissues, draining lymph nodes or distant solid 
organs to form micrometastasis niches at an early stage. These niches 
may aid in the initiation of recurrence. If we could confirm the tissue 
tropism of these DCCD cancer cells and perform targeted extended 
resection, these diseases may be curable at an early stage. Moreover, 
postnephrectomy drug treatment may be necessary for DCCD patients, 
even at stage I.

Although several independent studies suggested that first-line 
combined treatment could improve the PFS of patients with mRCC49,50, 
TKI treatment remains the primary first-line treatment for patients 
with mRCC. In this study, we determined that combined therapy with 
anti-VEGF+ immune checkpoint blockade or TKI+ immune checkpoint 
blockade is not superior to TKI monotherapy with sunitinib for IM2 
patients who have not undergone DCCD. In contrast, combined treat-
ment with immune checkpoint blockade significantly improved the 
prognosis of partial or complete DCCD patients. We also evaluated 
the utility of molecular subtyping for guiding second-line treatment. 
In meta-CheckMate51, regardless of the molecular subtype, the thera-
peutic efficacy of nivolumab (PD-1 inhibitor) was not inferior to that of 
everolimus (mTOR inhibitor); thus, this treatment should be recom-
mended as a priority.

In summary, this study identified a special subtype of ccRCC with 
distinctive metabolic features. It suggests new treatment opportunities 
for patients with treatment-resistant RCC.
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Methods
Experimental model and participants’ details
Human participants. A total of 100 participants, with an age range of 
27–84, were included in this study. This cohort contained males (n = 63) 
and females (n = 37), corresponding to the sex distribution of ccRCC14. 
Histopathological diagnosis was confirmed by at least two different 
pathologists per sample and only ccRCC cases were included in this 
sequencing cohort. Institutional review board approval (Tongji Hos-
pital) and informed consent were obtained before tissue acquisition 
and analysis. All individuals involved granted their consent through 
written affirmation before they participated in the study. Clinical 
characteristics are summarized in Supplementary Table 1.

Publicly available cohorts. IMmotion 151 is a phase 3 trial comparing 
atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) with sunitinib 
in patients with treatment-naive mRCC32,50. In total, 826 cases with 
complete sequencing data were involved in this analysis. Normalized 
expression matrix and paired clinical data were obtained from the 
supplementary material of the original paper32.

JAVELIN is a phase 3 trial involving patients with treatment-naive 
mRCC that compared avelumab (anti-PD-L1) plus axitinib (TKI) with 
the standard-of-care sunitinib33,49. Normalized expression matrix and 
paired clinical data were obtained from the supplementary material 
of the original paper.

Checkmate 025 is a randomized, phase 3 study comparing 
nivolumab with everolimus in patients with mRCC who had previ-
ously been treated with one or two anti-angiogenic regimens51. In a 
study discussed in ref. 34, CheckMate 025 was merged with phase I 
(CheckMate 009)52 and phase II (CheckMate 010) cohorts to gener-
ate a meta-checkmate dataset. The mixed checkmate cohort with 311 
mRCC cases was involved here. Normalized expression matrix and 
paired clinical data were obtained from the supplementary material 
of the original paper

WES sample processing, data collection and analysis
WES data quantification and mutation calling. Fastp (v0.20.1)53, an 
ultra-fast FASTQ preprocessor, was used to process raw fastq data. 
Clean reads were then mapped to the reference human genome UCSC 
(University of California, Santa Cruz) hg38 by Sentieon (v202010.04) 
BWA54. After duplicates removal and base quality score recalibration 
(BQSR), variant calling was conducted following GATK best practice 
workflow. Somatic single-nucleotide variations (SNAs) and small indels 
were detected using Sentieon TNhaplotyper2 (same as MuTect2 in 
GATK 3.8) and were annotated using ANNOVAR55 based on known 
genes in UCSC refGene. SNAs or indels with variant allele frequency 
(VAF) < 0.05 were filtered out. Five NATs failed to pass the quality con-
trol, and no more tissue was available to sequence once again. Hence, 
paired-tumor samples of these five NATs were not involved in SNA and 
SCNA calling. Instead, we applied the GATK germline mutation calling 
workflow and only selected the 50 most frequent SNAs in the other  
95 tumors to state the total mutation rate. Somatic mutation rate  
was stated by the maftools56 package. SNAs in each sample are depos-
ited in Supplementary Table 5.

SCNAs calling. SCNAs calling were performed with CNVkit (v0.9.10)57 
with all the parameters set as default. Only 95 tumor samples with 
matched NATs were involved in this analysis. Then Genomic Identifica-
tion of Significant Targets in Cancer (GISTIC2.0, v2.0.23)58 was applied 
to identify arm-level events, with q < 0.05 considered significant.

Mutation signature analysis. Single-nucleotide mutation has six sub-
stitution patterns (C > A, C > G, C > T, T > A, T > C and T > G). Together 
with 5′- and 3′-flanking nucleotides, it could be stratified into 96 base 
substitutions in trinucleotide sequence contexts. NMF algorithm in sig-
miner (v2.1.3)59 package was used to decipher the mutation signatures 

in somatic mutations. Then the cosine similarity was calculated to map 
these signatures to the COSMIC60 database.

WTS sample processing, data collection and analysis
RNA quantification. Fastp53 was used to process raw fastq data. Clean 
data were obtained after quality control, adapter trimming, quality 
filtering and per-read quality cutting. The paired-end clean reads were 
then aligned to the hg38 human reference genome (UCSC hg38) using 
HISAT2 (v2.1.0)61. All the parameters were set as default for HISAT2. 
FeatureCounts (v2.0.1)62 was then applied to count the read numbers 
mapped to each gene. Batch effect was estimated and removed with 
the combat-seq algorithm in the sva (v3.42.0) package63. Then raw 
count was transformed into transcripts per kilobase of exon model 
per million mapped reads (TPM). The count matrix was used in the 
DEG analysis, and the other analysis of bulk transcriptome was based 
on the TPM matrix.

Single-nucleic transcriptome and ATAC-seq
Processing of snRNA-seq and 10× multiome data. Raw fastq data 
of snRNA-seq was processed using Cell Ranger (v6.1.2), with all the 
parameters set as default. GRCh38 built following the manufacturer’s 
instructions of Cell Ranger was used as the reference genome. Raw data 
of multiome were processed using Cell Ranger ARC (v2.0.0).

UMI (unique molecular identifier) count matrix generated by Cell 
Ranger and Cell Ranger ARC was transferred into Seurat (v4.0.5) for 
further processing. First, single nuclei with nUMI <1,000 or have >10% 
mitochondrial-derived transcripts were considered as low-quality data 
and filtered out. Then the UMI count matrix was log-transformed with 
the NormalizeData function. FindVariableFeatures was performed 
to call variable genes (nFeatures = 3,000), and then PCA analyses 
were performed to reduce the dimension (nPCs = 50). Sample num-
ber was used to regress out potential batch effect using Harmony 
(v0.1.0)64 algorithm. Then, the top 50 Harmony-corrected dimen-
sions were used in the RunUMAP function of Seurat. FindNeighbors 
and FindClusters (resolution = 1.0) were then performed sequen-
tially to find cell subgroups in ccRCC. Identity of major cell types was 
determined according to known markers23. Cell subpopulations were 
named based on top markers found by the COSG (v0.9.0)65 package. 
Due to the absence of mitochondria and ribosomes in cell nuclei, 
cell clusters exhibiting a high proportion of transcripts derived from 
mitochondria or ribosomes, along with the absence of other spe-
cific marker genes, were categorized as low-quality data and subse-
quently excluded. Impact of the cell cycle was estimated using the 
CellCycleScoring function of Seurat. Two normal kidney-derived 
samples were processed following the same process. Cell type iden-
tification was performed based on markers from the single-cell 
atlas of human kidney66,67. According to the high heterogeneity of 
tumor cells between different individuals, reclustering of malignant 
cells was based on ‘pca’ instead of ‘Harmony’ to maintain sample- 
specific features.

Odds ratio (OR) analysis. To characterize the subtype preference 
distribution of cell subclusters, OR was calculated following the code 
generated in ref. 68 (https://zenodo.org/record/5461803). P values 
were calculated by Fisher’s exact test and then adjusted using the BH 
method. OR > 1.5 and adjusted P value < 0.05 indicated that this sub-
population was more preferred to distribute in this immune subtype, 
whereas OR < 0.5 and adjusted P value < 0.05 indicated that it was 
preferred not to distribute in this immune subtype. Endothelial cells 
were analyzed separately to investigate the IM subtype preference of 
endothelial cells.

Pathway analysis with gene sets variation analysis (GSVA). To esti-
mate the metabolic difference among cell subpopulations, we imple-
mented GSVA (v1.42.0)69 analysis in ‘ssGSEA’ mode. First, to reduce 
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the computational burden, mean expression per gene was calculated 
in each cell subpopulation using the AverageExpression function of 
Seurat. Then, ssGSEA analysis was performed on this normalized matrix 
using MSigDB hallmark, C2 and C5 gene sets. It was also performed on 
the gene list defined in this paper (Supplementary Table 6). To estimate 
the correlation of fibroblast and TAM subcluster, ssGSEA was also con-
ducted on the TPM matrix of TJ-RCC to obtain cell subtype signature 
per sample, followed by Pearson’s correlation analysis in R.

Copy number analysis. To verify the SCNA difference between IM2-like 
and IM4-like malignant cells, infercnv70 was used to estimate CNA in 
each cell. A baseline reference was generated with the normal renal 
cortex sample. Because ccRCC is mainly derived from PT of the human 
kidney, the medulla sample was not involved. The output matrix was 
visualized with ComplexHeatmap (v2.16.0) package71.

Trajectory analysis based on transcription factor profiling. 
TFs are known as drivers of the differentiation process. To obtain 
a DCCD-related TF list, we downloaded a TF list containing all the 
already known human TFs from GitHub (https://github.com/aertslab/ 
SCENIC)72. Then, we intersected DEGs between IM4/IM4-like and  
IM2/IM2-like groups at both bulk and single-cell levels and intersected 
them. The result was then intersected with the TF list. Finally, a TF list 
of 83 TFs was used for further analysis.

Trajectory analysis was performed to describe the transformation 
of cancer cells from IM2 to IM4-like patterns. Because UMI count has 
a strong effect on the dimensional reduction process, only half of the 
malignant cells with higher UMI count were involved in this analysis. 
First, a diffusion map of tumor cells was constructed using destiny 
(v3.8.1) package73, with Harmony-corrected dimensions used as the 
input data. Then pseudotime was predicted with Monocle 3 (v1.0.0)74 
and scanpy (v1.9.1)75, which show high similarity, and only the result of 
Monocle 3 was retained.

Processing of snATAC-seq data. SnATAC-seq data from the 10× multi-
ome platform was processed separately. Fragments from ten different 
tumors were combined by the cellranger-arc aggr algorithm. The out-
put of Cell Ranger ARC was imported into R environment using ArchR 
(v1.0.2)76 strategy. Because all snATAC data profiles by 10× multiome 
have paired snRNA-seq data, only single nuclei that passed the quality 
control of snRNA-seq were extracted for further analysis.

Enrichment of ATAC-seq accessibility at TSSs was performed to 
quantify data quality. Single nuclei with TSS <2 or fragments number 
<1,000 were removed due to low quality. ArchR function, addItera-
tiveLSI and addUMAP were performed sequentially to get a uniform 
manifold approximation and projection (UMAP) plot of snATAC data. 
Pseudobulk replicates were generated using the addReproduciblePeak-
Set function before peak calling with MACS2 (ref. 77). To identify dif-
ferential transcription factors mediating differentiation from IM2-like 
to IM4-like status, motif enrichment analysis was performed using the 
getVarDeviations function.

Paired snRNA and snATAC data were combined based on cell bar-
codes by ArchR. Then the correlation between gene expression and 
chromatin accessibility peaks was evaluated with the getPeak2Gene-
Links function with a correlation cutoff of 0.45 and resolution of 1. 
Footprinting analysis was performed to trace the imprint of TFs on 
binding sites. It was finished by getFootprints and plotFootprints func-
tions of ArchR, sequentially. Cells were grouped based on identity to 
create pseudobulk ATAC-seq profiles. Normalization was performed to 
subtract the Tn5 bias from the footprinting signal. scMEGA (v0.2.0)78 is a 
pipeline designed to infer gene regulatory network by using single-cell 
multi-omics data. It was implemented to create TF modules that drive 
the difference between IM2-like and IM4-like single nuclei with both 
snRNA and snATAC data. This process follows the manufacturer’s 
instructions with all the parameters set as default.

MS sample processing and data collection
Global proteomics. Global proteomics data interpretation. The raw  
spectra from each fraction were searched against the UniProt data-
base (https://www.uniprot.org/) separately by Proteome Discoverer 
2.2 (PD 2.2, Thermo Fisher Scientific). The parameters were set as 
follows: mass tolerance for precursor ion was 10 ppm and mass 
tolerance for product ion was 0.02 Da. In Proteome Discoverer 2.2, 
we specified carbamidomethyl as a fixed modification, oxidation 
of methionine as a dynamic modification and acetylation as an 
N-terminal modification. Missed cleavage sites were allowed up to 
two times.

To improve the quality of the analysis results, the retrieval results 
were further filtered in Proteome Discoverer 2.2 as follows: peptides 
with credibility higher than 99% were identified as peptide spectrum 
matches (PSMs). A protein containing at least one unique peptide is 
defined as an identified protein. Only the identified PSMs and proteins 
were retained. False discovery rate (FDR) was calculated, and PSMs and 
proteins with FDR ≥1.0% were filtered out.

The result of peptide and protein identification in Proteome 
Discoverer 2.2 software was imported into Spectronaut (version 
14.0, Biognosys) to generate a library. To generate a target list, pep-
tides and ion-pair selection rules were set to select the qualified 
peptides and product ions from the spectrum79. After that, the DIA 
data were imported into the software, and the ion-pair chromato-
graphic peaks were extracted according to the target list. Then we 
matched the ion and calculated the peak area to qualify and quan-
tify the peptides. The iRT added into the sample was used to correct 
the retention time, and the q value cutoff of precursor ion was set 
to 0.01. The output matrix was normalized by the VSN algorithm in 
NormalyzerDE (v1.12.0) package80. The final matrix was saved for  
downstream analysis.

Untargeted metabolomics
LC–MS data processing and metabolites annotation. The origi-
nal LC–MS data were processed using Progenesis QI V2.3 (Nonlinear 
Dynamics) for baseline filtering, peak identification, integral, retention 
time correction, peak alignment and normalization. Main parameters 
were set as follows: precursor tolerance, 5 ppm; product tolerance, 
10 ppm and product ion threshold, 5%. First, round compound iden-
tification was performed based on the precise mass-to-charge ratio 
(m/z), secondary fragments and isotopic distribution using in-house 
metabolites databases. Second, we also performed further metabolite 
identification based on the Human Metabolome Database81 and the 
METLIN82 database. Output data were used for further processing. 
Peaks with a missing value (ion intensity = 0) in more than 50% in either 
group were removed. Then zero values were replaced by half of the 
minimum value. Resulting scores were defined as the sum of matching 
scores of accurate molecular weights of MS1 (20), isotope distribution 
of MS1 (20) and fragments of MS2 (20). Compounds with resulting 
scores below 36 (of 60) points were also considered to be inaccurate 
and removed. The final data matrix was a combination of both the 
positive and negative ion data.

GC–MS data processing and metabolites annotation. The raw  
GC–MS data in .D format were transferred to .abf format using  
Analysis Base File Converter. Then, all the data were imported into 
MS-DIAL83 to perform peak detection, peak identification, MS2Dec 
deconvolution, characterization, peak alignment, wave filtering and 
missing value interpolation. Metabolite characterization is based on 
in-house LUG database (untarget database of GC–MS from Luming 
Bio) and a data matrix was derived, including sample information, the 
name of the peak of each substance, retention time, retention index, 
m/z ratio and signal intensity. In each sample, all peak signal intensities 
were segmented and normalized according to the internal standards 
with relative standard deviation (RSD) greater than 0.3 after screening. 
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After normalization, redundancy removal and peak merging were 
performed to obtain the final data matrix.

ST
Processing of ST data. Raw sequencing data in fastq format were pro-
cessed with Space Ranger (version 2.0.0). The output was then trans-
ferred into R environment using SPATA2 (v0.1.0)84. Quality control 
and dimension reduction were finished automatically in this process. 
Before further analysis, runAutoenconderDenoising was performed 
to denoise the expression matrix, which is based on a neural network 
model. Spatial CNV analysis was performed using runCnvAnalysis of 
SPATA2, which is based on infercnv. ST data from a normal renal cortex 
sample were used to generate a reference genome. Pathway score 
of pyrimidine metabolism was visualized using the plotRidgeplot 
function with ‘ssGSEA’ mode. IM2 and IM4 scores were conducted 
using the plotSurfaceAverage function. Spatial trajectory was con-
structed by the createTrajectories function, with IM2-like region set 
at the beginning.

Spatial metabolomics
Data acquisition and MSI analysis. AFADESI-MSI is a spatially 
resolved metabolomics approach discussed in ref. 85. The analy-
sis was carried out with an AFADESI-MSI platform (Beijing Victor 
Technology) along with a Q-Orbitrap mass spectrometer (Q Exactive, 
Thermo Fisher Scientific). ACN/H2O (8:2) was used as the solvent for-
mula at negative mode and ACN/H2O (8:2, 0.1% FA) at positive mode. 
The parameters were set as follows: the solvent flow rate, 5 μl min−1; 
the transporting gas flow rate, 45 l min−1; the spray voltage, ±0 kV; 
the distance between the sample surface and the sprayer, 3 mm; MS 
resolution, 70,000; scan range, 70–1000 Da; scan mode, full MS; the 
automated gain control target, 2 × 106; the maximum injection time, 
200 ms; the S-lens voltage, 55 V and the capillary temperature, 350 °C. 
The MSI experiment was carried out with a constant rate of 0.2 mm s−1 
continuously scanning the surface of the tumor or NAT section in the x 
direction and a 0.1 mm s−1 vertical step in the y direction. The scanning 
area was 10 mm × 10 mm.

MSI data processing. Raw MSI data in .raw format was converted into 
.imML format and imported into MSiReader (v1.02)86 to perform ion 
image reconstruction and background subtraction. SmetDB database 
and pySM annotation framework were used to perform FDR-controlled 
metabolite annotation for high-resolution imaging MS. Region-specific 
MS profiles were precisely extracted by matching both histological fea-
tures and ST. IM2-like and IM4-like regions were selected, respectively. 
Wilcoxon test was used to identify differentially distributed metabo-
lites between IM2-like and IM4-like regions within the same sample.  
P values were adjusted by the FDR strategy. Differential metabolites 
with |log2(FC)| > 1 and adjusted P value < 0.05 were considered statisti-
cally significant.

Statistical analysis
PCA. We performed PCA analysis on transcriptomics (TPM), proteom-
ics and metabolomics data matrix of all the samples to get a general 
view of the difference between tumor and NATs. PCA analysis was 
conducted with R base packages, and the top two dimensions were 
used to visualize the results.

Tumor versus NATs differential genes, proteins and metabolites 
analysis. WTS count matrix experienced batch correction was used 
to identify DEGs between tumor tissues and NATs. DEGs analysis was 
conducted using edgeR (v3.36.0)87 package. Genes with |log2(FC)| > 1 
and adjusted P value < 0.01 were considered upregulated genes, while 
|log2(FC)| < −1 and adjusted P value < 0.01 were considered downregu-
lated genes. The same approach was also used to obtain DEGs between 
immune subclusters (one IM subtype versus the other three subtypes).

For DIA-based proteomics data, the Wilcoxon test was conducted 
to evaluate the differential abundance (DA) of proteins between tumors 
and NATs. Cutoff value was set the same as transcriptomics.

Wilcoxon test was performed to determine the DA of metabo-
lites. The P value was adjusted using the Benjamini–Hochberg (BH) 
procedure. |log2(FC)| > 1 and adjusted P value < 0.01 were considered 
as statistically significant.

DA score of metabolomics. The DA score represents the tendency of 
a pathway whether have increased or decreased levels of metabolites, 
relative to the control group6. It was defined as the ratio of the differ-
ence between upregulated and downregulated metabolites to all the 
measured metabolites in this pathway, as defined in ref. 6. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) metabolites database 
was used to calculate the DA scores.

Enrichment of altered metabolites. Altered metabolites in IM4 
compared to other tumors and IM1–IM3 to NATs were calculated as 
described above. To identify the pathways with the greatest changes 
between subtypes, these metabolites were then imported into Meta-
boanalyst 5.0 (ref. 88) to perform pathway enrichment analysis, respec-
tively. Pathway impact was used to estimate the metabolic difference 
among ccRCC subtypes.

Gene set enrichment analysis. To evaluate the pathway-level dif-
ference between tumors and NATs, we performed ssGSEA analysis in 
GSVA69 package to calculate the pathway score of known gene sets col-
lected in hallmark, C2, C5 of MSigDB per sample in both transcriptomics 
and proteomics data. Then a linear model from the Limma (v3.50.0)89 
package was applied to calculate the difference between tumor and 
NATs. When comparing differences between multiple groups, differ-
ential analysis was performed by comparing the selected group to all 
other samples. ssGSEA was also implied to determine cell abundance 
using TPM matrix based on manually defined cell signatures (Sup-
plementary Tables 6 and 7). Z score transformation was performed to 
allow easier visualization in heatmaps.

To evaluate the correlation between T cells and pyrimidine 
metabolism, Pearson’s correlation analysis was conducted between 
the ssGSEA score of effector T (Teff) cell and pyrimidine metabolism.

For metabolic analysis of four immune subgroups, GO terms with 
‘metabolic’, ‘catabolic’ or ‘biosynthesis’ were selected and manually 
checked. Finally, ssGSEA scores of 1,001 metabolic-associated GO 
terms were used for pathway-level analysis.

xCell analysis. xCell16 predicted cell composition matrix of TCGA KIRC 
was downloaded from the website (https://xcell.ucsf.edu/). xCell was 
also performed on the TPM matrix of TJ-RCC using the online tool.

Pathway enrichment analysis. GO enrichment analysis was per-
formed using clusterProfiler (v4.2.0)90. Four gene modules in Figs. 2a  
and 4a were analyzed separately. To prevent discrimination caused  
by stromal cells, all extracellular matrix-related genes were 
excluded in this analysis. The q value cutoff was set as 0.05 and the  
P value cutoff was 0.01. The P values were adjusted by the BH procedure. 
Adjusted P value < 0.01 was considered statistically significant.

Correlation between SCNA, transcriptome and proteome. To evalu-
ate the effect of SCNAs, Spearman’s correlations between gene-level 
SCNA values returned by GISTIC2 and mRNA or protein abundances 
were calculated and visualized by multiOmicsViz (v1.18.0)91. FDR 
threshold was set at 0.01 for both mRNA and protein analysis.

Extraction of TME signature from scRNA-seq data. Because con-
siderable cell types have been confirmed to have tissue-specific or 
cancer-specific features, a signature matrix extracted from single-cell 
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sequencing data obtained from ccRCC may help us better understand 
the ITH of ccRCC. Therefore, single-cell sequencing data of ccRCC, 
profiled by a study discussed in ref. 20, was used to generate a signa-
ture matrix that stratifies features of all the cell types in the TME of 
ccRCC. Data of NATs were not involved. All the analysis was performed 
using Seurat (v4.0.5)92. At first, single cells with UMI counts less than 
1,000 or over 30% mitochondrial-derived transcripts were consid-
ered as low quality and filtered out. The UMI count matrix was then 
log-transformed with the NormalizeData function. The top 3,000 
variable genes were called by FindVariableFeatures, and then PCA 
analyses were performed to find the top 50 PCAs. The patient-derived 
batch effect was removed with the Harmony64 algorithm, with all the 
parameters set as default. Then, the top 50 Harmony-corrected dimen-
sions were used in the RunUMAP function of Seurat. FindNeighbors 
and FindClusters (resolution = 1.0) were then performed sequentially 
to find cell subgroups in ccRCC. Major cell groups were identified 
with previously known markers23, and cell subgroups were annotated 
by the top marker of each cell cluster. Finally, 25 different cell types  
were annotated.

FindAllMarkers function was then performed to identify mark-
ers of each cell subgroup. DEGs with |log2(FC)| > 1 and adjusted  
P value < 0.001 were considered as candidates. To balance the weight 
of each cell subgroup in the clustering of bulk-seq data, only the top 
60 markers of each subpopulation with the highest log2(FC) were 
restrained. Finally, we obtained a 911-gene signature matrix of ccRCC 
and subjected it to molecular subtyping analysis.

Identification of TME-based molecular subtypes of ccRCC. TPM 
matrix of 911 signature genes selected in scRNA-seq was used to iden-
tify molecular subtypes. Unsupervised clustering of RNA-seq data was 
performed with ConsensusClusterPlus 2 (v1.58.0)93. The most suitable 
k value was selected according to the relative change in area under the 
CDF curve. Finally, k value was set at 4, and four immune subgroups 
were identified, with distinct features in multi-omics data.

Extending IM subgroups to other ccRCC cohorts. First, we selected 
the signature genes with higher expression in one group relative to 
others for each of the four subtypes using |log2(FC)| > 1 and adjusted 
P value < 0.01 as the criteria. P values were calculated by Wilcoxon’s 
test and adjusted by the BH procedure. Signature genes used here are 
listed in Supplementary Table 8. We identified 226 signature genes  
for IM1, 189 for IM2, 146 for IM3 and 295 for IM4. Compared to 911 
immune-based signature described above, this 856-gene signature is 
influenced by the gene expression of both malignant cells and TME cells.

To match the ccRCC samples to each subtype, we used the near-
est template prediction (NTP) algorithm94 packaged in CMScaller95 
to assign each patient to a molecular subtype. The log2-transformed 
expression matrix was normalized by the ematAdjust function with 
the RLE method and then annotated by ntp function (nPerm = 1,000, 
seed = 42, nCores = 30). Four independent cohorts, including TCGA 
KIRC, IMmotion 151, JAVLIN and checkmate renal, were analyzed 
separately.

Survival analysis. KM analysis was performed using the survminer 
package to evaluate prognosis value of molecular subtype system 
in four cohorts, respectively. log-rank P value < 0.05 was considered 
statistically significant. Pairwise comparison was conducted using the 
pairwise_survdiff algorithm in survminer. P values were corrected by 
the BH algorithm. HR (harzard ratio) was calculated using COX regres-
sion model and visualized by forestploter.

IHC staining. OCT (optimal cutting temperature compound)- 
embedded frozen samples were used to perform IHC staining. All the 
samples used to perform IHC staining were involved in multi-omics 
sequencing. IHC staining was performed as previously described. 

All the slices were screened by Pannoramic DESK (3DHISTECH) and 
analyzed with CaseViewer 2.2. The following antibodies were used: 
anti-human CD8 (Abcam, ab178089; 1:100), anti-human CD31 (Pro-
teintech, 11265-1-AP; 1:2,000), anti-Human DCN (Abcam, ab277636, 
1:2,000), anti-human CD3 (Proteintech, 17617-1-AP; 1:1,000), 
anti-human CD163 (Proteintech, 16646-1-AP, 1:2,000), anti-human 
CX40 (Bioss, bs-1050R; 1:500) and anti-human a-SMA/ACTA2 (Pro-
teintech, 14395-1-AP; 1:2500). CD31 marked endothelial cells, DCN 
marked fibroblasts, α-SMA marked SMCs, pericytes and fibroblasts, 
CD8 marks CD8+ T cells, CD163 marked macrophages13, CX40(GJA5) 
marked arterial vasculature and ACKR1 marked venous vasculature. 
Goat anti-rabbit IgG H&L (horseradish peroxidase (HRP); Abcam, 
ab205718; 1:2000) was used as the secondary antibody.

Multicolor immunofluorescence staining. Multicolor immunofluo-
rescence was conducted on a series of slices of those used to perform 
IHC. Antigen was retrieved by EDTA antigen repair buffer (pH = 8.0; 
Powerful Biology, B0035) for 15 min. Endogenous peroxidase was 
inactivated by incubation in 3% H2O2 at room temperature for 25 min. 
Nonspecific sites were blocked by incubating in 3% BSA for 30 min. Incu-
bation in primary antibodies, HRP-labeled secondary antibody and TSA 
(tyramide signal amplification)-conjugated fluorescein were repeated 
sequentially for four cycles. The slices were heated by microwave in 
EDTA antigen repair buffer (pH = 8.0) for 25 min after each cycle. The 
primary antibodies used in the validation of colocalization of CAFs and 
IGF1+ TAMs were as follows: anti-human CD31 (Proteintech, 11265-1-AP; 
1:2,000), anti-human ACKR1 (SAB, 56458; 1:200), anti-human PDGFRA 
(Abcam, ab203491; 1:500), anti-human F13A1 (Abcam, ab76105; 1:100) 
and anti-human CD8 (Abcam, ab178089; 1:100). Secondary antibodies 
were as follows: goat anti-rabbit IgG H&L (Cy3) preadsorbed (Abcam, 
ab6939; 1:200), goat anti-rabbit IgG H&L (Alexa Fluor 488; Abcam, 
ab150077; 1:500), goat anti-rabbit IgG H&L (Alexa Fluor 594; Abcam, 
ab150080; 1:500), goat anti-rabbit IgG H&L (Cy5) preadsorbed (Abcam, 
ab6564; 1:500). The antigenic binding sites were scanned using the Pan-
noramicMIDI (3DHISTECH) according to the manufacturer’s protocol 
and processed in CaseViewer 2.2.

ORO staining. OCT-embedded frozen samples used for IHC staining 
were also involved in ORO staining. The frozen sections were rewarmed, 
dried and fixed in 4% paraformaldehyde for 15 min. After washing and 
drying in the air, the slices were dipped in an oil red working solution 
for 8–10 min and then washed with water. After differentiating in 75% 
alcohol solution for 2–5 min, the slices were washed with water again. 
Then the slices were incubated in Gill’s or Mayer’s hematoxylin for 30 s 
to stain the cell nuclei and washed with water. The slices were then dif-
ferentiated shortly in hydrochloric ethanol and washed thoroughly in 
running tap water for 3 min. Finally, the slices were dried and mounted 
with glycerin jelly.

Estimating the DCCD score of TCGA KIRC and snRNA-seq. To evalu-
ate the IM2-like or IM4-like feature of IM1 and IM3 samples, we con-
ducted a signature scoring strategy similar to a previous work96. First, 
we used marker genes of IM2 and IM4 subtypes as signature gene sets 
(Supplementary Table 8) and obtained signature scores by ssGSEA anal-
ysis. To balance the weight of the IM2 and IM4 scores, we scale-centered 
the IM2 and IM4 scores, respectively. The final score was defined as the 
IM4 score minus the IM2 score. Samples with score >0 were defined as 
IM4-like, whereas samples with score <0 were defined as IM2-like. The 
same procedure was performed on snRNA-seq data. When analyzing 
malignant cells of snRNA-seq data, all the single nuclei were mapped 
to IM2-like and IM4-like cells according to the DCCD score.

Pseudotrajectory of TCGA KIRC samples. To evaluate dynamic 
changes alongside the DCCD process in bulk-seq data, we constructed 
3D diffusion map of TCGA KIRC samples with destiny package.  
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Similar distribution as snRNA-seq data, with IM2 samples localized at 
the beginning and IM4 samples at the end, could be observed. Then 
samples were ranked by DCCD score and the heatmap of TFs was 
smoothened by the genSmoothCurves function of Monocle (v2.22.0)97.

Inclusion and ethics statement
This research adhered to ethical standards consistent with the 1964 Hel-
sinki Declaration and its subsequent amendments. The study protocols 
and consent procedures received approval from the Ethics Committee 
of Wuhan Tongji Hospital.

All participants were informed about the study’s nature and their 
rights, and their written informed consent was obtained. All methods 
were performed following relevant guidelines.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data have been uploaded to the GSA-Human data-
base98,99 under accession code PRJCA014547 (https://ngdc.cncb.ac.cn/
bioproject/browse/PRJCA014547), but a DAC (discretionary access con-
trol) approval is necessary due to policy restrictions. Every researcher 
could submit an application on the website, and it would commonly 
take several weeks for the database administrator and DAC to review. All 
the processed sequencing data have been uploaded to Zenodo (https://
zenodo.org/record/8063124) and figshare100 (https://doi.org/10.6084/
m9.figshare.24599295). Expression matrix of TCGA KIRC along with 
clinical features was obtained from UCSC Xena (https://xenabrowser.
net/datapages/?cohort=GDC%20TCGA%20Kidney%20Clear%20
Cell%20Carcinoma%20(KIRC)&removeHub=https%3 A%2 F%2Fxena.
treehouse.gi.ucsc.edu%3A443). JAVLIN and checkmate datasets were 
obtained from the supplementary material of the original papers33,34. 
Data of IMmotion 151 (ref. 32) was obtained from the EGA (European 
Genome-Phenome Archive) database (https://ega-archive.org/studies/ 
EGAS00001004353) with approval from the DAC. Single-cell sequenc-
ing data of ccRCC were downloaded from Mendeley (https://doi.
org/10.17632/nc9bc8dn4m.1). FUSCC refers to the ccRCC cohort pro-
filed by a team from Fudan University Shanghai Cancer Center (FUSCC). 
Processed WES data of FUSCC were obtained from NODE (https://
www.biosino.org/node) under project ID: OEP000796. Peking Uni-
versity (PKU) refers to the ccRCC cohort profiled by a team from PKU. 
WES data of the PKU cohort collected under PRJNA596359 (https://
www.ncbi.nlm.nih.gov/sra/?term=PRJNA596359) were downloaded 
from the SRA database. COSMIC database60 (https://cancer.sanger.
ac.uk/cosmic) was used to annotate the SBS signatures in WES data.  
Source data are provided with this paper.

Code availability
Scripts for downstream analysis are available on GitHub (https://github.
com/AndersonHu85/ccRCC_multiomics). No custom code was devel-
oped for this study.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Multi-omics characterization of TJ-RCC cohort.  
(a): Genomic profiles of PKU cohort. Ins: insertion; Del: deletion. (b): Co-
occurrence of frequent nonsynonymous mutations in ccRCC. Combined TJ-RCC, 
PKU and FUSCC cohorts were used in the analysis. P-values were calculated 
by one-sided Fisher’s exact test. (c): Seven mutational signatures deciphered 
from the combined WES data from 490 ccRCC genomes. (d): Contributions of 
each mutational signature in each sample. Combined TJ-RCC, PKU and FUSCC 
cohorts were used in the analysis. (e): Similarity of 7 mutational signatures versus 
COSMIC collected signatures. (f): The nonsynonymous mutational burdens of 
aristolochic acid-associated (AA) and not associated (non-AA) tumors in meta-
cohort. Shape of each dot represents sample from different cohorts. P value was 
calculated by two-side student’s t test. In boxplots, the central line represents 
the median value, box limits indicate the interquartile ranges, and the whiskers 

extend to 1.5 times the interquartile range. FUSCC: cohort from Fudan University 
Shanghai Cancer Center. PKU: cohort from Peking University. (g): Proportion of 
6 single-nucleotide mutation patterns in given gene regions. Hub genes: VHL, 
PBRM1, BAP1, SETD2 and KDM5C. (h): Proportion of T>A signature in each sample. 
P value was calculated by two-sided Student’s t test. Top: n = 32 AA tumors 
versus n = 233 non-AA tumors. Bottom: n = 41 AA tumors versus n = 161 non-AA 
tumors. Tumor samples without mutation in targeted genes were ignored here. 
The central line of the box represents the median value, box limits indicate the 
interquartile ranges. (i): Frequency of SCNAs in TJ-RCC. Copy number gains and 
losses are colored in red and blue, respectively. Del: deletion; Amp: amplification. 
(j): Pearson’s correlations of gene-level copy number variations (CNVs) (x-axis) 
with mRNA (left) and protein abundance (right). Only significantly positive (red) 
and negative (green) correlations are shown (q < 0.01).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | TME-based molecular subtyping of ccRCC.  
(a): Working pipeline of TME-based molecular subtyping. Single cells were 
clustered into 22 cell types (left). The signature matrix showed the marker  
genes identified in the scRNA-seq data (middle). The consensus matrix showed 
result of ConsensusClusterPlus when k = 4 (right). Data from ref. 20. (b,c): Dot 
plot showing markers used to identify cell identities. The dot size represents 
percent of cells detected specific genes in this cell subgroup. (d): Working 
pipeline and visualization strategy of Fig. 2a. (e): Key clinical characteristics, 
somatic mutations and SCNAs in each sample of TJ-RCC, related to Fig. 2a.  

(f): Heatmap showing T values from differential analysis using linear algorithm 
of Limma; Differential analysis was conducted via comparing ssGSEA scores 
of the samples of one IM subtype versus all other subtypes were compared. 
(g): Relationship between IM subgroups and AA subgroups. (h): IHC staining 
on tumors belonging to different immune subtypes. CD31 marked endothelial 
cells, DCN marked fibroblasts, a-SMA marked SMCs, pericytes and fibroblasts, 
CD8 marks CD8+ T cells and CD163 marked macrophages. Experiment has been 
repeated three times.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Decoding intra-tumoral heterogeneity of each IM 
subgroup. (a): Heatmap of signature genes in TCGA KIRC grouped by NTP 
predicted subtypes. (b,c): Contributions of each tumor grade and stage in 4 
immune subtypes in TCGA KIRC. (d): KM plot of TCGA KIRC grouped by immune 
subtypes. The global p-value was calculated by log-rank algorithm. Square 
brackets show the result of pairwise comparison. ****: adj.p.value < 0.0001,  
*: adj.p.value < 0.05. (e): UMAP plot showing 17 myeloid sub-clusters (left),  
9 lymphocyte sub-clusters (middle) and 15 endothelial sub-clusters (right).  
Cell subgroups were named by top marker identified using snRNA-seq data. 

Mo: monocyte; Mø: macrophage; EC: endothelial; Cap: capillary; Fib: fibroblast; 
peri: pericyte; SMC: smooth muscle cell. (f): Heatmap of odds ratio (OR) showing 
different cell abundance of stromal cell types between immune subtypes. P-value 
was calculated by one-sided Fisher’s exact test and corrected by BH algorithm. 
(g): Volcano plot showing differentially expressed genes between IM3-4 versus 
IM1-2 derived endothelial cells. P-values were calculated by Wilcoxon t test and 
adjusted by BH algorithm. (h): Genome accessibility track visualization of FOS 
(top) and FOSB (bottom) with peak-to-gene links. Genes translated from 5′ to 3′ 
are colored in red while others are colored in blue.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Characteristics of stromal cells in ccRCC.  
(a,b): Boxplot of (a) Tex score calculated by ssGSEA algorithm in TJ-RCC tumors 
and (b) proportion of Tex in total T cells in snRNA data. P values were calculated by 
two-sided Turkey’s test. IM1: n = 22, IM2: n = 27, IM3: n = 36, IM4: n = 15. In boxplots, 
the central line represents the median value, box limits indicate the interquartile 
ranges, and the whiskers extend to 1.5 times the interquartile range. (c): Heatmap 
showing difference in pathway scores calculated by ssGSEA per cell between 
different macrophage sub-clusters. Shown are t-values from a lineal model of 
Limma via comparing selected subgroups to all the other samples. (d): Pearson’s 
correlation between specific subpopulations. P-values are from two-sided 
Student’s t test. Cell abundance was estimated by ssGSEA score in each sample 
of TJ-RCC cohort. The red line shows the linear interpolation of the data. X-axes 
and Y-axes represent ssGSEA score of specific cell types. (e): Boxplot of fibroblast 

score calculated by ssGSEA algorithm in TJ-RCC tumors. P values were  
calculated by two-sided Tukey’s test. IM1: n = 22, IM2: n = 27, IM3: n = 36, IM4:  
n = 15. The central line of the box represents the median value, box limits indicate 
the interquartile ranges, and the whiskers extend to 1.5 times the interquartile 
range. (f): Heatmap showing Pearson’s correlation between cell abundance in  
TJ-RCC. Cell abundance was represented by ssGSEA score calculated using marker 
genes from snRNA-seq. (g): Ideogram of histological locations of given cell types. 
(h): IHC staining of DCN and ACTA2 on W5_T. Experiment has been repeated three 
times. (i): Multi-color fluorescence on W5_T, associated to Fig. 2h. White box 
marks a region lack of fibroblast, while yellow box marks a fibroblast enriched 
region. Figure 2h magnified the yellow box region. (j): Multi-color fluorescence on 
W5_T. Experiment has been repeated three times. (k): IHC staining on W5_T. GJA5 
marked arterial vascular. Experiment has been repeated three times.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Correlation between immune and metabolic 
heterogeneity. (a): Heatmap showing ssGSEA scores of metabolic related GO 
terms per sample of TJ-RCC. Pathway scores (ssGSEA) were calculated using TPM 
matrix of bulk RNA-seq of 100 tumor samples. Differential analysis of ssGSEA 
scores was performed via comparing a subtype of interest to all other subtypes. 
198 out of 1001 metabolic-related GO terms show significant difference between 
at least one subgroup, and other tumors were extracted for visualization. 
Z-scores were calculated based on mean value and standard deviation of the 
ssGSEA scores across all shown samples. 198 GO terms were clustered into 4 

different clusters. Key terms frequently occurring within each module were 
labeled on the right. SNA: somatic single-nucleotide variations; mut: mutated; 
WT: wild type. (b): Heatmap showing ssGSEA scores of metabolic related GO 
terms in each cell sub-cluster. GO terms are ranked as in a. Macro: macrophage; 
Mono: monocyte; Malignant-p: malignant-proliferating. (c): Heatmap showing 
T values from differential analysis of ssGSEA scores using linear algorithm 
of Limma. (d,e): IHC staining of CD3D and CD8A on given tumor samples. 
Experiment has been repeated three times.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Expression of IM signatures in normal kidney. 
(a): Structure of human normal renal corpuscle, PT: proximal tubular; DTL: 
descending thin limb; ATL: ascending limb; TAL: thick ascending limb; DCT: 
distal convoluted tubule; CNT: connecting tubule; CD: collecting duct. (b): 
UMAP plot of renal tubular cells colored by cell subclusters; IC: intercalated 
cells, Unk: unknow. (c): Dot plot showing marker genes of each cell sub-cluster. 

(d): UMAP plot of tubular cells colored by gene module score calculated by 
AddModuleScore. (e): Boxplots showing the abundance of metabolites related  
to GSH biosynthesis. P values were calculated by two-sided Turkey’s test.  
IM1: n = 22, IM2: n = 27, IM3: n = 36, IM4: n = 15. For boxplots, the central line 
represents the median value, box limits indicate the interquartile ranges, and the 
whiskers extend to 1.5 times the interquartile range.
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Extended Data Fig. 7 | IM1 and IM3 ccRCC contain partial IM4 features.  
(a): Workflow of the identification of IM2-like and IM4-like ccRCC. (b): Boxplots 
showing IM2 score and IM4 score in each sample of TJ-RCC. P values were 
calculated by two-sided Turkey’s test. IM1: n = 22, IM2: n = 27, IM3: n = 36, IM4:  
n = 15. For boxplots, the central line represents the median value, box limits indicate 
the interquartile ranges, and the whiskers extend to 1.5 times the interquartile 
range. (c): KM plot of TCGA KIRC grouped by adjusted immune subtypes.  
The global p-value was calculated by log-rank algorithm. Pairwise comparison 

was performed when global p-value < 0.05. Square brackets show the result  
of pairwise comparison. ****: adj.p.value < 0.0001, **: adj.p.value < 0.01.  
(d): Contributions of each tumor stage in IM2, IM2-like, IM4-like and IM4 groups 
in TJ-RCC (top) and TCGA KIRC (bottom). (e): KM plot of TCGA KIRC grouped 
by adjusted immune subtypes. The global p-value was calculated by log-rank 
algorithm. Pairwise comparison was performed when global p-value < 0.05. 
Square brackets show the result of pairwise comparison. ****: adj.p.value < 0.0001,  
***: adj.p.value < 0.001, **: adj.p.value < 0.01, *: adj.p.value < 0.05.
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Extended Data Fig. 8 | The role of adjusted IM classification in clinical 
cohorts. (a,c,e): KM plot of immune subtypes in given cohorts (a) IMmoton 151, 
(c): JAVELIN, (e) CheckMate. The global p-values were calculated by log-rank 
algorithm. Pairwise comparison was performed when global p-value < 0.05.  
P values of pairwise comparison were corrected by BH algorithm. ****: adj.p.value 
< 0.0001, ***: adj.p.value < 0.001, **: adj.p.value < 0.01, *: adj.p.value < 0.05.  

atezo_bev: atezolizumab plus bevacizumab; combo: avelumab plus axitinib. 
(b,d,f,g): Forest plot for hazard ratios in patients treated with combined therapy 
versus sunitinib; (b) IMmoton 151, (d): JAVELIN, (f,g): CheckMate. The numbers 
next to the forest plot indicated number of participants in each group. Centers 
for the error bars represent the hazard ratio and error bands represent 95% 
confidence intervals of hazard ratios.
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Extended Data Fig. 9 | DCCD score mirrors proportion of IM4-like cells in 
malignant cells. (a): UMAP of malignant cells in snRNA-seq colored by S phage 
and G2M phase scores. (b): UMAP of malignant cells in snRNA-seq colored by 
immune subtypes. (c,d): Harmony adjusted UMAP of malignant cells in snRNA-
seq colored by (c) IM2-like and IM4-like identities; (d) IM4 (left) and IM2 scores 
(right). (e): Boxplots showing the comparison of the proportion of IM2-like and 

IM4-like cells in malignant cells (top) and total cells (bottom) in each immune 
subtype. P values were calculated by two-sided Tukey’s test. IM1: n = 5, IM2: n = 5, 
IM3: n = 6, IM4: n = 4. For boxplots, the central line represents the median value, 
box limits indicate the interquartile ranges, and the whiskers extend to 1.5 times 
the interquartile range.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Sub-cluster level shift from non-DCCD to DCCD. 
(a): Frequency of arm-level SCNAs in IM2, IM2-like, IM4-like and IM4 tumors in 
TCGA KIRC. (b): Frequency of arm-level SCNAs in IM2, IM2-like, IM4-like and 
IM4 tumors in TJ-RCC. (c): Frequency of arm-level SCNAs in snRNA-seq data of 
TJ-RCC. IM4-like cells of Z43_T had higher chr12 gain and chr19 gain signature 
than IM2-like cells. The dashed red box marked Z43_T with subclonal SCNA. 
(d): H&E staining of Y7_T. The slice is used for 10X visium profiling. (e): Spatial 
signature scores in visium data of Y7_T. (f): Visium captured dots of Y7_T, colored 
by Seurat clusters. (g): Visualization of spatial SCNA of Y7_T, grouped by Seurat 

clusters. (h): Seurat cluster of spatial transcriptome data of X98_T (left) and SCNA 
in each dot of the visium slice grouped by Seurat cluster (numbered 1–8) (right). 
IM2-like region contains diploid chr 9. (i): Spatial dot plot of metabolomics of 
X98_T, colored by clusters. LC-pos: positive mode LC-MS; LC-neg: negative mode 
LC-MS. (j): Differential metabolites between IM2-like and IM4-like regions in 
X98_T. Metabolites belonging to carboxylic acids, fatty acyls and glycerollipids 
were colored according to the metabolite class. The m/z values were labeled to 
differentially distributed fatty acyls.
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Raw sequencing data has been uploaded to the GSA-Human database under accession code PRJCA014547 (https://ngdc.cncb.ac.cn/bioproject/browse/
PRJCA014547) but a DAC approval is necessary due to policy restrictions. All the Processed sequencing data have been uploaded to Zenodo (https://zenodo.org/
record/8063124). Expression matrix of TCGA KIRC along with clinical features was obtained from UCSC Xena (https://xenabrowser.net/datapages/?cohort=GDC%
20TCGA%20Kidney%20Clear%20Cell%20Carcinoma%20(KIRC)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). JAVLIN and checkmate datasets 
were obtained from the supplementary material of the original paper. Data of IMmotion 151 was obtained from EGA database (https://ega-archive.org/studies/
EGAS00001004353) with approval from the DAC. Single cell sequencing data of ccRCC was downloaded from Mendeley (http://dx.doi.org/10.17632/
nc9bc8dn4m.1). FUSCC referred to the RCC cohort profiled by team from Fudan University Shanghai Cancer Center (FUSCC). PKU referred to the RCC cohort profiled 
by team from Peking University (PKU). WES data of PKU cohort collected under PRJNA596359 (https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA596359) was 
downloaded from SRA database. Processed WES data of FUSCC was obtained from NODE (https://www.biosino.org/node) under Project ID: OEP000796. COSMIC 
database (https://cancer.sanger.ac.uk/cosmic) was used to annotate the SBS signatures in WES data.
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Reporting on sex and gender This cohort contained males (n = 63) and females (n = 37), corresponding to the sex distribution of ccRCC.
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Race, ethnicity, or other socially relevant information was not involved in this study.

Population characteristics A total of 100 participants, with an age range of 27-84, were included in this study. This cohort contained males (n = 63) and 
females (n = 37), corresponding to the gender distribution of ccRCC. Baseline population characteristics of patients with 
ccRCC are detailed in Supplementary Tables 1.

Recruitment Histopathological diagnosis was confirmed by at least two different pathologists per sample and only ccRCC cases were 
included in this sequencing cohort. Informed consent was obtained prior to tissue acquisition. Our cohort included 
treatment-naive ccRCC patients underwent surgery at Wuhan Tongji Hospital in Jul 2020 and Apr 2021 without intentional 
selection.

Ethics oversight Institutional Review Board approval (Tongji Hospital) and informed consent was obtained prior to tissue acquisition and 
analysis.
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Sample size Clinical characteristics are summarized in Table S1.  No statistical methods were used to predetermine sample size. 100 tumors with paired 
adjacent normal tissues (NATs) were used in whole exon sequencing. Sample size of whole transcriptome sequencing, global proteomics, non-
target metabolomics were 100 tumors and 50 NATs. The quantification of sample sizes employed in these multi-omics analyses was based on 
existing norms within the discipline, as established by parallel investigations in the realm of solid tumor multi-omics research (PMID: 
33577785, 34534465, 33212010). 
20 out of 100 tumor samples were selected for single nucleic transcriptome (n=10) or 10X multiome (n=10) sequencing based on molecular 
subtypes. Furthermore, 10 out of these 20 tumors were randomly selected for spatial transcriptome (n=10) and spatial metabolome (n=10) 
profiles. A paired normal renal cortex and medulla were sequenced by single nucleic transcriptome, spatial transcriptome and spatial 
metabolome and was used as a normal control.

Data exclusions WES data of 5 NATs failed to pass the quality control and no more tissue was available to sequence once again. Hence, paired-tumor samples 
of these 5 NATs were not involved in SNA and SCNA calling. Instead, we applied GATK germline mutation calling workflow and only select 50 
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most frequent SNAs occured in the other 95 tumors to stat the total mutation rate.

Replication The reported findings were replicated across multiple biological samples. Oil red O staining, IHC and immunofluorescenct imaging were 
performed on 20 different tumor samples and replicated 3 times on each sample. No other experiment was involved.

Randomization Because all treatment-naive ccRCC patients underwent surgery at Wuhan Tongji Hospital between Jul 2020 and Apr 2021 were involved, 
acquisition of primary patient tumor samples was not randomized. Samples were randomized by case and control status during RNA isolation 
or library preparation. Tumor samples involved in single nuclei sequencing and spatial sequencing were randomly selected from 100 cases.

Blinding Blinding of the tissue was not possible. All analyses were performed in an automated manner across conditions.
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Antibodies
Antibodies used Anti-Human CD8 (1:100, Abcam, Cat# ab178089) 

Anti-Human CD31 (1:2000, Proteintech, Cat#:11265-1-AP) 
Anti-Human DCN (1:2000, Abcam, Cat# ab277636) 
Anti-Human CD3 (1:1000, Proteintech, Cat# 17617-1-AP) 
Anti-Human CD163 (1:2000, Proteintech, Cat# 16646-1-AP)  
Anti-Human a-SMA/ACTA2 (1:2500, Proteintech, Cat# 14395-1-AP) 
Anti-Human PDGFRA (1:500, Abcam, Cat# ab203491) 
Anti-Human F13A1 (1:100, Abcam, Cat# ab76105) 
Anti-Human ACKR1 (1:200, SAB, Cat# 56458) 
Anti-Human CX40 (1:500, BIOSS, Cat# bs-1050R) 
Goat Anti-Rabbit IgG H&L (HRP) (1:2000, Abcam, Cat# ab205718) 
Goat Anti-Rabbit IgG H&L (Cy3 ®) preadsorbed (1:200, Abcam, Cat# ab6939) 
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 488) (1:500, Abcam, Cat# ab150077) 
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 594) (1:500, Abcam, Cat# ab150080) 
Goat Anti-Rabbit IgG H&L (Cy5 ®) preadsorbed (1:500, Abcam, Cat# ab6564)

Validation All antibodies used in this study are commercially available. They are validated by the vendors for the specific assay and species used. 
The validation is available on the vendors website. 
Anti-Human CD8: https://www.abcam.cn/products/primary-antibodies/cd8-alpha-antibody-sp239-ab178089.html 
Anti-Human CD31: https://www.ptgcn.com/Products/PECAM1-Antibody-11265-1-AP.htm#product-information  
Anti-Human DCN: https://www.abcam.cn/products/primary-antibodies/decorin-antibody-epr24097-105-ab277636.html 
Anti-Human CD3: https://www.ptgcn.com/products/CD3E-Antibody-17617-1-AP.htm 
Anti-Human CD163: https://www.ptgcn.com/products/CD163-Antibody-16646-1-AP.htm 
Anti-Human a-SMA/ACTA2: https://www.ptgcn.com/products/ACTA2-Antibody-14395-1-AP.htm 
Anti-Human PDGFRA: https://www.abcam.cn/products/primary-antibodies/pdgfr-alpha-antibody-epr22059-270-ab203491.html 
Anti-Human F13A1: https://www.abcam.cn/products/primary-antibodies/factor-xiiia-antibody-ep3372-ab76105.html 
Anti-Human ACKR1: https://www.sabbiotech.com.cn/g-320124-DARC-Rabbit-mAb-56458.html 
Anti-Human CX40: http://www.bioss.com.cn/SpeNew01.asp?id=258&pro37=1&pro33=101&guige01=50ul 
Goat Anti-Rabbit IgG H&L (HRP): https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-hrp-ab205718.html 
Goat Anti-Rabbit IgG H&L (Cy3 ®) preadsorbed: https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-cy3--
preadsorbed-ab6939.html  
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 488): https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-alexa-
fluor-488-ab150077.html 
Goat Anti-Rabbit IgG H&L (Alexa Fluor® 594): https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-alexa-
fluor-594-ab150080.html 
Goat Anti-Rabbit IgG H&L (Cy5 ®) preadsorbed: https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-cy5--
preadsorbed-ab6564.html 
Goat Anti-Rabbit IgG H&L (Cy3 ®) preadsorbed: https://www.abcam.cn/products/secondary-antibodies/goat-rabbit-igg-hl-cy3--
preadsorbed-ab6939.html
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