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Distinct and shared genetic architectures  
of gestational diabetes mellitus and  
type 2 diabetes
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Gestational diabetes mellitus (GDM) is a common metabolic disorder 
affecting more than 16 million pregnancies annually worldwide1,2. GDM is 
related to an increased lifetime risk of type 2 diabetes (T2D)1–3, with over 
a third of women developing T2D within 15 years of their GDM diagnosis. 
The diseases are hypothesized to share a g en et ic p re disposition1–7, but few 
studies have sought to uncover the genetic underpinnings of GDM. Most 
studies have evaluated the impact of T2D loci only8–10, and the three prior 
genome-wide association studies of GDM11–13 have identified only five loci, 
limiting the power to assess to what extent variants or biological pathways 
are specific to GDM. We conducted the largest genome-wide association 
study of GDM to date in 12,332 cases and 131,109 parous female controls in 
the FinnGen study and identified 13 GDM-associated loci, including nine new 
loci. Genetic features distinct from T2D were identified both at the locus and 
genomic scale. Our results suggest that the genetics of GDM risk falls into 
the following two distinct categories: one part conventional T2D polygenic 
risk and one part predominantly influencing mechanisms disrupted in 
pregnancy. Loci with GDM-predominant effects map to genes related to islet 
cells, central glucose homeostasis, steroidogenesis and placental expression.

Gestational diabetes mellitus (GDM) is a common disorder of preg-
nancy that has substantially increased in prevalence across diverse 
population groups in the last 15 years14. Despite conferring substantial 
morbidity to both mother and child, relatively little is known about the 

genetics of GDM outside of a proposed shared genetic etiology with 
type 2 diabetes (T2D). The largest existing genome-wide association 
study (GWAS) of GDM revealed five genome-wide significant loci, all 
but one previously associated with T2D13. Although the results seem to 

Received: 4 March 2023

Accepted: 7 November 2023

Published online: 5 January 2024

 Check for updates

1Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 2Stanley Center for Psychiatric Research, Broad Institute of 
Harvard and MIT, Cambridge, MA, USA. 3Harvard Medical School, Boston, MA, USA. 4Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, 
University of Helsinki, Helsinki, Finland. 5Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland. 6Department of Public Health, 
University of Helsinki, Helsinki, Finland. 7TAUCHI Research Center, Faculty of Information Technology and Communication Sciences (ITC), Tampere University, 
Tampere, Finland. 8Finnish Institute for Health and Welfare (THL), Helsinki, Finland. 9Center for Economic and Social Research, University of Southern 
California, Los Angeles, CA, USA. 10Department of Economics, University of Southern California, Los Angeles, CA, USA. 11Institute of Genomics, University of 
Tartu, Tartu, Estonia. *Lists of authors and their affiliations appear at the end of the paper.  e-mail: mark.daly@helsinki.fi; elisabeth.widen@helsinki.fi

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01607-4
http://orcid.org/0000-0001-8422-6530
http://orcid.org/0000-0002-1664-1350
http://orcid.org/0000-0002-5953-5523
http://orcid.org/0000-0003-3643-8605
http://orcid.org/0000-0003-0554-4667
http://orcid.org/0000-0002-2964-6011
http://orcid.org/0000-0002-2527-5874
http://orcid.org/0000-0002-0949-8752
http://orcid.org/0000-0001-7108-2806
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01607-4&domain=pdf
mailto:mark.daly@helsinki.fi
mailto:elisabeth.widen@helsinki.fi


Nature Genetics | Volume 56 | March 2024 | 377–382 378

Letter https://doi.org/10.1038/s41588-023-01607-4

GDM contributor, and note that, intriguingly, the only genome-wide 
significant finding for this variant in FinnGen is for intrahepatic choles-
tasis of pregnancy (FinnGen R11: β = 0.24, P = 1.6 × 10−14; Supplementary 
Table 2 and Supplementary Note).

To confirm the robustness of these findings, we performed  
replication studies using samples newly recruited to FinnGen after 
the data freeze and a large sample from the Estonian Biobank (EstBB; 
a combined 8,931 cases and 170,809 controls; Supplementary Table 3).  
Eleven of 13 associations replicated (the well-established T2D and 
previously observed GenDIP hit13 at CDKN2B was not significant but 
was directionally consistent as was the association at CMIP). Notably, 
the two new Finnish-enriched findings at ESR1 and MAP3K15 were both 
strongly confirmed (replication P values of 3.5 × 10−5 and 4.3 × 10−6, 
respectively).

Fine-mapping17 of the 13 loci pinpointed 14 independent signals 
(the region near CDKN2B containing two independent signals), of  
which nine regions had a 95% credible set containing five or fewer 
SNPs (Table 1 and Supplementary Table 1; Methods). Nine regions 
represented new GDM associations not reported in previous GDM 
GWAS. We characterized the 13 current confirmed GDM GWAS loci 

broadly support the hypothesis of shared etiology, none of the existing 
GWAS were sufficiently powered to fully assess the degree to which 
genetic risk is shared between GDM and T2D. The one prior GDM locus 
not associated with T2D, while intriguing, is insufficient to identify 
mechanisms or biological pathways specific to, or with differential 
effects in, GDM.

To elucidate the genetic underpinnings of GDM, we conducted 
a GWAS15 of GDM in 12,332 cases and 131,109 parous female controls. 
Participants were of Finnish ancestry from the FinnGen study16. Cases 
were identified using Finnish health and population registry sources, 
including registry data from inpatient hospitalizations, outpatient 
specialty clinics and birth registry. Cases were confirmed to have 
a diagnosis within a pregnancy window, and those with diagnoses  
of diabetes before the index pregnancy were excluded (Methods; 
Supplementary Note).

Our GWAS nearly tripled the previously known loci for GDM, 
identifying 13 distinct associated chromosomal regions (Fig. 1 and 
Supplementary Figs. 1–13). Significant variants include 4 of 5 previ-
ously reported GWAS loci. We observe a modest effect at the fifth, the 
HKDC1 locus (rs9663238; β = 0.05, P = 0.0024), proposed as a unique 
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Fig. 1 | Genome-wide association results for GDM. a, Manhattan plot of GWAS of 
GDM in 12,332 cases and 131,109 parous female controls of Finnish ancestry with 
REGENIE 2.2.4. The x axis reflects chromosomal positions, and the y axis reflects 
−log10(P) values for the two-tailed association test for each variant, presented 
on a log scale. Red dotted line indicates the significance threshold (P = 5 × 10−8). 
Colored SNPs represent the credible set members for the 13 genome-wide 
significant loci, with blue indicating loci previously associated with GDM and 

orange indicating new associations. Labels indicate the gene nearest to the 
fine-mapped lead SNP. b, The genetic correlation (SNP-rg) between GDM and 53 
other diseases, traits or biomarkers was computed using LD score regression. We 
plot the SNP-rg with confidence intervals for all traits that were significant after 
Bonferroni correction for two-sided tests of 53 traits (P < 9.4 × 10−4). Results for 
all tested traits are reported in Supplementary Tables 19 and 20. Colors indicate 
phenotype category.
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through annotation and colocalization of credible sets with >3,800 
GWAS (Supplementary Tables 4 and 5), quantitative trait loci (QTLs) 
for gene expression, biomarkers and metabolites (Supplementary  
Tables 6–11) and chromatin interactions (Supplementary Table 11), 
along with tests of enrichment by functional consequence, gene 
expression or canonical gene sets (Supplementary Tables 13–16 and 
Supplementary Figs. 14–17; Methods). Given the consistency of the 
replication, we include also top results and fine-mapping of a joint 
GWAS of the FinnGen discovery and holdout samples (18,474 cases 
and 171,349 controls), which nominates additional new loci for further 
investigation (Supplementary Table 17).

We next performed analyses to evaluate the shared genetic 
etio logy with T2D. Assessment of genome-wide significant sig-
nals using our algorithm Significant Cross-trait Outliers and 
Trends in Joint York regression (SCOUTJOY; Methods) indicated 
that the 13 GDM-associated loci showed significant heterogeneity 
in their relationship to T2D (P < 0.001; Supplementary Table 18). 
Five of the 13 GDM-associated loci were not significantly associ-
ated (P < 5 × 10−8) with T2D in either a previously published large 
T2D meta-analysis18 or in FinnGen, while the remaining loci are 
established T2D hits (Table 1 and Supplementary Fig. 18). At the 
genomic level, GDM and T2D were genetically correlated (rg = 0.71, 
s.e. = 0.06, P = 6.8 × 10−37), which is significantly greater than zero 
(P = 6.8 × 10−37) but less than 1 (P = 1.2 × 10−7; Methods). Significant 
genetic correlations were also seen with 12 diseases or traits and 
eight blood laboratory values in cases where the disorder or value was  
phenotypically related to GDM (Fig. 1, Supplementary Figs. 19 and 
20 and Supplementary Tables 19–23). In both the genomic correla-
tion and top hits comparison, GDM was significantly associated with 
fasting glucose (FG), hemoglobin A1c (HbA1C) and 2-h glucose results 

on oral glucose tolerance testing but was not associated with fast-
ing insulin level. None of these glycemic traits or related disorders, 
however, appeared to stratify the 13 GDM-associated loci into distinct 
groups similar to T2D (Supplementary Fig. 21 and Supplementary 
Table 24). Comparison of the effect of GDM- and T2D-associated 
loci across sex and across pregnancy history indicated that the rela-
tionship was not generally mediated by pregnancy effects or sex 
differences (Supplementary Figs. 22 and 23 and Supplementary 
Tables 18, 25 and 26).

We then explored the relationship between GDM and T2D effects 
in more detail applying a Bayesian classification algorithm19 to the 
top associations for GDM and top associations for T2D selected to 
have comparable statistical evidence for association (13 loci for GDM 
and 15 loci for T2D; Methods; Supplementary Note). Initial assess-
ment was performed using T2D effect sizes from a GWAS of male 
FinnGen participants (27,607 cases and 118,687 controls) to prevent the  
Bayesian algorithm from being affected by sample overlap. We then 
performed the same analysis in men and in women from a large external 
meta-analysis of T2D for comparison.

The shared variants analysis suggested that the genetics of  
GDM risk falls into two categories, one shared with T2D risk and the 
other predominantly gestational (Fig. 2 and Supplementary Table 27).  
Specifically, the comparison of effect sizes between GDM and T2D 
does not support the existence of a single, consistent relation-
ship between GDM and T2D across loci, but instead proposes two  
distinct classes of significant variants in this scan (Fig. 2)—class G, 
with GDM-predominant effects, and class T, with T2D-predominant 
effects. The two-class model of relationship between GDM and T2D 
fits the observed distribution of odds ratios (ORs) significantly better 
than a single-class model (log10(Bayes factor (BF)) = 29.41). Class G 

Table 1 | Fourteen genome-wide significant fine-mapped signals for GDM

Regions Lead variants Ref/Alt AF β (s.e.) P values Nearest genes Annotationa Cred. set sizeb PClass G
c Knownd

Class G loci (GDM-predominant effect)

 2:27508073-27519736 rs780093 T/C 0.649 0.12 (0.0149) 6.75 × 10−16 GCKR Intron 3 0.995 T2D, FG

 2:16890084 rs1402837 C/T 0.17 0.11 (0.0186) 3.87 × 10−9 SPC25, G6PC2 Intron 1 0.981 FG

 5:96357306-96392261 rs1820176 T/C 0.314 −0.14 (0.0154) 7.86 × 10−20 PCSK1 Intron 26 >0.999 FG

 6:151805650 rs537224022 C/G 0.00984 −0.447 (0.0812) 3.82 × 10−8 ESR1 5′ UTR 1 0.999 –

 11:92975544 rs10830963 C/G 0.358 0.403 (0.0143) 8.65 × 10−175 MTNR1B Intron 1 >0.999 GDM, 
T2D, FG

 12:97449565-97470365 rs74628648 C/T 0.0786 −0.169 (0.027) 4.03 × 10−10 NEDD1 Intron 15 0.978 T2D, FG

 16:81435701-81519035 rs2926003 C/T 0.337 −0.0824 (0.0151) 4.52 × 10−8 CMIP Intron 48 0.987 –

 X:19266251-19485409 rs56381411 C/T 0.0153 −0.404 (0.0638) 2.44 × 10−10 MAP3K15 Missense 4 >0.999 –

Class T loci (T2D-predominant effect)

 6:20673649-20703721 rs34499031 T/TAA 0.332 0.12 (0.0148) 5.10 × 10−16 CDKAL1 Intron 8 <0.001 GDM, 
T2D, FG

 10:112994312-113014674 rs34872471 T/C 0.203 0.168 (0.0173) 1.69 × 10−22 TCF7L2 Intron 4 <0.001 GDM, 
T2D, FG

 12:4275678-4367206 rs76895963 T/G 0.0305 −0.26 (0.0445) 4.69 × 10−9 CCND2 Intron 2 <0.001 T2D

Unclassified loci

 3:123346931-123405666 rs6798189 G/A 0.184 −0.103 (0.0186) 2.60 × 10−8 ADCY5 Intron 16 0.138 T2D, FG

 9:22129580-22136490 rs1333051 A/T 0.115 −0.126 (0.0228) 2.92 × 10−8 CDKN2B Regulatory 5 0.465 GDM, 
T2D, FG

 9:22133646-22134652 rs7019437 C/G 0.438 0.0394 (0.0142) 5.49 × 10−3 CDKN2B Intergenic 5 N/a –

For each independent association identified by fine-mapping with SuSiE, the lead variant (highest posterior inclusion probability) and the region spanned by the credible set are reported. Loci 
are grouped according to their classification in the shared variants analysis (Methods; Supplementary Table 27). Genomic positions are on GRCh38. Reference (ref) and alternative (alt) alleles, 
alternative allele frequency (AF), GWAS results and nearest coding gene are given for the lead variant. β (log odds ratio), its standard error (s.e.) and corresponding unadjusted two-sided P 
values are from logistic regression using REGENIE. aMost severe annotated consequence among variants in the credible set. bNumber of variants in the credible set for the region. cPosterior 
probability that the lead variant is in the GDM-predominant class identified in the shared variants analysis. The secondary fine-mapped association on chromosome 9 (rs7019437) was omitted 
from that analysis. dWhether the locus has been reported as significantly associated with GDM, T2D or FG in the previous GWAS13,18,34.
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contains 8 of the 13 GDM-associated loci that have GDM-predominant 
SNP effects, with effect sizes roughly three times greater in GDM than 
in T2D on average (Fig. 2 and Table 1). The majority of class G loci had  
a positive effect in T2D, but it was proportionately less than their  
effect in GDM. In comparison, the GDM-associated SNPs contained 
in class T had effects in the two disorders that were consistent with 
T2D-signals significantly associated with diabetes only in the T2D 
GWAS—namely, a reduced effect size in GDM versus T2D—a pattern 
of effects that was observed for all SNPs in class T. Variant classes 
were maintained whether comparing to T2D in men or women, with 
no evidence of a sex-specific classification (Supplementary Figs. 24  
and 25 and Supplementary Tables 18 and 28). Stratification patterns 
were also consistent in T2D regardless of pregnancy history (Supple-
mentary Fig. 25 and Supplementary Table 18) or inclusion of extended 
GDM results from GWAS including the FinnGen holdout set (Supple-
mentary Figs. 26 and 27 and Supplementary Tables 29 and 30). Fasting 
plasma glucose associations occur in all classes, specifically with 5 of 8 
class G loci, 2 of 3 class T loci and 2 of 3 unclassified loci.

The existence of the GDM-predominant class of effects, class G, 
distinct from those traditionally seen in T2D, raises the possibility of 
physiologic mechanisms of glycemic control with different actions or 
regulations during pregnancy (Supplementary Note, Supplementary 
Table 31 and Supplementary Fig. 28). As presented in Table 1, the eight 
class G loci have a peak SNP that is either intronic to a protein-coding 
gene, a missense mutation or, a 5′-UTR variant. Although the effects 
of a locus do not always operate through the nearest gene, several of 
the loci implicate genes involved in plausible cellular processes, for 
example, signal transduction and hormone processing. Examples of 
such genes20–27 are presented in Box 1.

Finally, to gain further insight into potential functional differences 
between GDM and T2D, we examined the cell-type specific expression 
patterns associated with the GWAS summary statistics28 (Methods;  
Fig. 3, Supplementary Tables 32–35 and Supplementary Figs. 30–32). 
We evaluate cell-type specific enrichment despite the lack of significant 
tissue-level enrichment because pregnancy induces major adaptive 
changes to specific cell populations within maternal tissues that might 
not be reflected in bulk tissue expression. Analyses integrating multiple 
large single-cell RNA expression datasets indicated that pancreatic β 

cells are significantly associated both with GDM and T2D. However, only 
GDM had significant associations with the hypothalamus, that is, hypo-
thalamic GABAergic neurons (GABA2), hypothalamic glutaminergic 
neurons (GLU7) and neurons in the ventromedial hypothalamus (VMH) 
arcuate nucleus (NR5a1_Adcyap1; Fig. 3 and Supplementary Table 34).

Taken together, we present data from the largest GDM GWAS to 
date, identifying 14 independent signals in 13 associated chromosomal 
regions. This study replicates all five of the loci previously associated 
with GDM, albeit with indications of a weaker effect of HKDC1 than 
previously reported, and discovers nine new loci. Our key finding is 
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Box 1

Background on selected 
candidate genes for class G loci, 
with GDM-predominant effects

From the eight class G loci associated with GDM, we present 
background information on MAP3K15, PCSK1 and ESR1, including 
a brief description of the gene product, function and previously 
established genetic associations.

Gene Known genetic relationships and function

MAP3K15 A missense variant (G838S, chrX_19380197_C_T_b38) protective 
against GDM was found in MAP3K15, which encodes a protein 
kinase that regulates apoptotic-mediated cell death and 
stress response. The gene has high expression in the adrenal 
glands and has previously been linked to steroidogenesis20 and 
polycystic ovarian syndrome21. The GDM-associated missense 
variant is rare outside of Finland, but rare loss-of-function 
variants in MAP3K15 have recently been associated with T2D 
protection in UK Biobank22, where female carriers of such rare 
nonsynonymous variants had a 30% reduced risk of T2D and 
reduced blood glucose and HbA1C levels, and hemizygous male 
carriers of rare protein-truncating variants had a 35% reduced 
risk of T2D. Further characterization of the GDM-associated 
variant by phenome-wide association study (PheWAS) analyses 
in FinnGen indicated that the variant is associated with increased 
risk for hypertension (β = 0.11, P = 2.0 × 10−8), and we replicate a 
modest protective effect for T2D (β = −0.09, P = 1.8 × 10−3), which is 
considerably lower than that seen in GDM (β = −0.404).

PCSK1 PCSK1, which encodes prohormone convertase 1/3, critically 
regulates endocrine and neuronal prohormone processing. 
Previous data show that homozygous loss of function of PCSK1 
results in a generalized and pleiotropic prohormone conversion 
defect characterized by severe obesity, impaired adrenal and 
thyroid function, reactive hypoglycemia, elevated levels of 
proinsulin and low levels of insulin23, whereas common gene 
variants have been associated with BMI24, fasting proinsulin, 
fasting glucose and T2D. Interestingly, the GDM-associated 
risk allele identified in our study is associated with lower BMI 
(β = −0.02, P = 5.3 × 10−11), lower weight (β = −0.02, P = 5.3 × 10−11) and 
lower height (β = −0.01, P = 3.9 × 10−6).

ESR1 One likely hormone-related class G signal is a roughly twofold 
Finnish-enriched low-frequency variant mapping to the 5′-UTR 
of the estrogen receptor gene, ESR1, which protects from GDM. 
The variant 6-151805650-C-G is several orders of magnitude 
more significant than neighboring variants and in FinnGen has 
>99% posterior probability of being the causal variant. Of note, 
in FinnGen, this variant is also associated with increased height 
(β = 0.07, P = 1 × 10−16) and similarly fine-mapped in a credible set of 
only one SNP. ESR1 encodes ERα, which mediates both positive 
and negative feedback of estrogen on the hypothalamus, 
regulating puberty, ovulation and menopause. Homozygous 
loss-of-function results in elevated gonadotropins, delayed 
puberty, infertility, insulin resistance, increased adiposity and 
altered bone metabolism25–27.

http://www.nature.com/naturegenetics
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that GDM has a partially distinct genetic etiology, that is, while GDM 
and T2D in part share a polygenic predisposition, there is a second cat-
egory of GDM genetic risk factors that are predominantly gestational 
contributors to disease. This contextualizes the substantial effect of 
the MTNR1B locus, which had been reported previously as an outlier9, 
but our data now show that MTNR1B is representative of a whole group 
of GDM-predominant loci, characterized by a larger effect on GDM 
than on T2D.

Further studies will be required to characterize the precise 
GDM-predominant molecular effects, but our current results suggest 
plausible mechanisms related to maternal adaptive physiological 
responses to pregnancy. Broadly, pregnancy increases circulating 
gestational hormones (for example, human placental lactogen, pro-
gesterone and estrogen) altering normal homeostatic glycemic path-
ways in the brain and pancreas as well as impaired insulin sensitivity 
in maternal peripheral tissues. The brain and pancreas both show 
clear enrichment of signal in our cell-type specificity analysis of GDM, 
with our results in the brain showing specific associations with hypo-
thalamic and arcuate (ARC) neurons in GDM that are not seen in T2D 
(Fig. 3 and Supplementary Tables 32–34). The hypothalamus and ARC 

are connected by multiple neural pathways29, and both regions have 
been implicated in adaptive glycemic response during pregnancy30. 
In that context, our ESR1 locus is particularly interesting given that 
the VMH contains glucose-sensing neurons that express the estrogen 
receptor-α (ERα, encoded by ESR1) and act to regulate glucose levels31. 
Moreover, in mice, ERα knockout or perturbation of estrogen levels 
(which occurs in pregnancy) alters the expression of multiple class G 
genes (for example, PCSK1, MTNR1B and SPC25-G6PC2) in ARC neurons 
that arise in the VMH32. Our cell-type specificity results particularly 
highlight Nr5a1_Adcyap1 in ARC, which projects from the VMH33 (Sup-
plementary Fig. 31, Supplementary Table 34 and Supplementary Note). 
Given the complexity of GDM, however, much larger studies will be 
required to reach a comprehensive view of the molecular underpin-
nings of GDM susceptibility.

The current study design in the rather homogeneous Finnish 
population carries specific strengths and weaknesses associated with 
this analysis approach. On one hand, GWAS discovery is enhanced by 
population homogeneity16, and the linkage of national birth, inpatient 
and outpatient medical registries enables robust phenotyping (Meth-
ods). The generalizability of the results may suffer, however, as some 
detected loci may be for rare alleles specifically enriched in the Finnish 
population. In our analyses of GDM, two loci mapped to rare alleles 
enriched in Finland, which may be difficult to replicate elsewhere, while 
70% of the loci correspond to variants that are common (minor allele 
frequency (MAF) > 10%), in non-Finnish European ancestry individu-
als (Table 1). Nonetheless, additional studies prioritizing ancestrally 
diverse populations are needed for a better understanding of the 
genetic underpinnings of GDM in all populations at risk.

In summary, we discovered nine new loci associated with GDM 
and demonstrated that GDM genetic risk is distinct from T2D both at 
the locus and genomic scale. Our results suggest that the genetics of 
GDM risk falls into the following two categories: one part T2D risk and 
one part predominantly gestational contributors to disease. Tissue 
characterization of GDM genetics further implicates tissues previ-
ously identified in adaptive pregnancy responses, raising hypotheses 
regarding genetic effects in these tissues during pregnancy. Broadly, 
this work underscores the benefits of focusing resources on pregnancy 
disorders as pregnancy is a natural perturbation that offers lever-
age to discover loci with new physiologic mechanisms of glycemic or 
homeostatic control.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Ethics statement
Participants in FinnGen provided informed consent for biobank 
research, based on the Finnish Biobank Act. Alternatively, separate 
research cohorts, collected before the Finnish Biobank Act came into 
effect (in September 2013) and the start of FinnGen (August 2017), were 
collected based on study-specific consents and later transferred to the 
Finnish biobanks after approval by Fimea, the National Supervisory 
Authority for Welfare and Health. Recruitment protocols followed the 
biobank protocols approved by Fimea. The Coordinating Ethics Com-
mittee of the Hospital District of Helsinki and Uusimaa (HUS) approved 
the FinnGen study protocol HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health 
and Welfare (permit: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017,  
THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/ 
2019, THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), Digital  
and Population Data Service Agency (permit: VRK43431/2017-3,  
VRK/6909/2018-3 and VRK/4415/2019-3), the Social Insurance  
Institution (permit: KELA 58/522/2017, KELA 131/522/2018, KELA 70/ 
522/2019, KELA 98/522/2019, KELA 134/522/2019, KELA 138/522/ 
2019, KELA 2/522/2020 and KELA 16/522/2020), Findata (permit:  
THL/2364/14.02/2020, THL/4055/14.06.00/2020, THL/3433/ 
14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, THL/ 
5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/ 
14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, 
T H L / 1 9 6 5 / 1 4 . 0 6 . 0 0 / 2 0 2 1 ,  T H L / 5 5 4 6 / 1 4 . 0 2 . 0 0 / 2 0 2 0 , 
THL/2658/14.06.00/2021, THL/4235/14.06.00/2021) and Statistics 
Finland (permit: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier 
TK-53-90-20) TK/1735/07.03.00/2021).

The Biobank Access Decisions for FinnGen samples and data used 
in FinnGen Data Freeze 8 include the following: THL Biobank BB2017_55, 
BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, 
BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service 
Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, Auria Biobank  
AB17-5154 and amendment 1 (August 17, 2020), AB20-5926 and 
amendment 1 (April 23, 2020), Biobank Borealis of Northern  
Finland_2017_1013, Biobank of Eastern Finland 1186/2018 and amend-
ment 22 § /2020, Finnish Clinical Biobank Tampere MH0004 and 
amendments (21.02.2020 and 06.10.2020), Central Finland Biobank 
1-2017 and Terveystalo Biobank STB 2018001.

EstBB research was conducted in accordance with good ethical 
standards and was approved by the Estonian Committee of Bioethics 
and Human Research (1.1-12/1020).

Cohort
The FinnGen Study is a public–private partnership project combining 
data from Finnish biobanks and electronic health records from national 
registries. The linked national health registers include data on hospital and 
outpatient visits, primary care, cause of death and medication records. 
Approval from the FinnGen Study was received to use the data in the pre-
sent work. After a 1-year embargo, the FinnGen summary stats are available 
for download. In this study, we used the results from the FinnGen release 
R8, which includes data from 342,499 individuals and disease endpoints.

Phenotyping
Full details of phenotyping are described in the Supplementary Note. 
Briefly, clinical endpoints with corresponding dates were constructed 
for gestational diabetes and related diagnoses for exclusions for 
all FinnGen participants as described in the Supplementary Note. 
Temporal phenotyping was then performed to phenotype each preg-
nancy for the presence of glycemic disease, and then individuals were 
assigned as cases or controls. Beginning with 330,000 pregnancies 
among genotyped FinnGen participants, we defined a ‘pregnancy win-
dow’ of 40 before delivery until 5 weeks after delivery. A pregnancy 
met inclusion criteria for ‘gestational diabetes’ if it had (I1) gestational 

diabetes International Classification of Diseases (ICD) codes occur-
ring in the pregnancy window, (I2) any diabetes codes occurring in 
the pregnancy window (for example, for ICD8) or (I3) abnormal blood 
glucose test results in the pregnancy registry. Pregnancies were then 
excluded for the following: (E1) any previous diabetes diagnosis code 
occurring outside a pregnancy window; (E2) any previous significant 
pancreatic disease, including chronic pancreatitis, pancreatic necro-
sis, pancreatic cancer or cystic fibrosis or (E3) any previous type 1 
diabetes (T1D) or T2D code. Pregnancies passing these exclusion 
criteria and without any inclusion criteria for gestational diabetes 
were designated as ‘unaffected.’ Then, to phenotype individuals, 
cases were identified among the 151,000 genotyped females with a 
history of pregnancy as those with at least one pregnancy meeting 
inclusion criteria for gestational diabetes and passing exclusion 
criteria. Controls were defined as females with only ‘unaffected’ 
pregnancies (that is, no diabetes or significant pancreatic diseases 
occurring before or during any pregnancy, and no abnormal blood 
glucose in the pregnancy registry).

Genotyping and GWAS
A detailed description of the study design and analytical methods is 
available in the online documentation (https://github.com/FINNGEN/
regenie-pipelines). In brief, FinnGen individuals have been genotyped 
with Illumina and Affymetrix chip arrays. Quality control was per-
formed to remove samples and variants of poor quality. Imputation 
was performed using a population-specific SISu v3 imputation refer-
ence panel. A subset of unrelated individuals of genetically confirmed 
Finnish ancestry was identified. GWAS was performed using REGENIE 
2.2.4. Sex, age, 10 principal components (PCs), and genotyping batch 
were included as covariates in the analysis.

Fine-mapping
Fine-mapping of a 1.5-Mb locus around any GWAS lead SNP was per-
formed using the SuSiE algorithm17, which reports causal variants  
and a 95% credible set for each independent signal (details described 
previously16 and at https://finngen.gitbook.io/documentation/ 
methods/finemapping). As linkage disequilibrium (LD), we used 
in-sample dosages (that is, cases and controls used for each pheno-
type) computed with LDstore.

Independent signals were those that either represent the  
primary strongest signal with lead P < 5 × 10−8 or as secondary signals 
that must have genome-wide significance and log BF > 2.

Replication
Replication was performed in (1) a replication holdout sample from 
FinnGen, (2) an EstBB cohort, (3) a meta-analysis of the FinnGen holdout 
and EstBB samples and (4) the previously published GenDIP consortium 
meta-analysis (Supplementary Note and Supplementary Table 3)13. For 
GenDIP, we also consider replication of the previously published loci 
in the current GWAS (Supplementary Table 2). The FinnGen replica-
tion cohort is a holdout sample of 6,026 cases and 45,296 controls 
with genotyping, phenotyping and analysis matching the current 
discovery GWAS.

The EstBB is a population-based biobank with 212,000 partici-
pants. The 198K data release was used for the replication analyses 
described here. All EstBB participants have signed a broad informed 
consent form. Participants with gestational diabetes were identified 
using the ICD-10 code system (information on ICD codes is obtained 
via linking with the National Health Insurance Fund and other data-
bases). The EstBB replication cohort consists of 2,904 female cases 
with an ICD code for gestational diabetes (O24.4) and 125,513 female 
controls with genotyping, imputation and analysis performed as 
described previously35,36. All EstBB participants have been genotyped 
at the Core Genotyping Lab of the Institute of Genomics, Univer-
sity of Tartu, using Illumina Global Screening Array v1.0 and v2.0.  
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Samples were genotyped, and PLINK format files were created using 
Illumina GenomeStudio v2.0.4. Individuals were excluded from the 
analysis if their call rate was <95% or if the sex defined based on het-
erozygosity of the X chromosome did not match the sex in pheno-
type data. Before imputation, variants were filtered by call rate <95%, 
Hardy–Weinberg equilibrium (HWE) P < 1 × 10−4 (autosomal variants 
only) and minor allele frequency <1%. Variant positions were updated 
to b37, and all variants were changed to be from TOP strand using 
GSAMD-24v1-0_20011747_A1-b37.strand.RefAlt.zip files from https://
www.well.ox.ac.uk/~wrayner/strand/ webpage. Prephasing was done 
using Eagle v2.3 software38 (number of conditioning haplotypes 
Eagle2 uses when phasing each sample was set to:–Kpbwt=20000) 
and imputation was done using Beagle v.28Sep18.79339 with effective 
population size ne = 20,000. Population-specific imputation reference 
of 2,297 WGS samples was used37.

Association analysis was carried out using SAIGE (v0.43.1) software 
implementing a mixed logistic regression model without LOCO option, 
using sex, age, age_sq and ten PCs as covariates in step I. Replication 
meta-analysis was performed using inverse-variance weighted fixed 
effects meta-analysis. Replication in each analysis was evaluated at 
P < 0.05 after Bonferroni correction for the number of loci available 
in the replication sample.

Annotation
Variants were annotated with Ensembl Variant Effect Predictor ver-
sion 104 (https://www.ensembl.org/info/docs/tools/vep/index.html) 
data to give the projected variant consequence. Each variant was 
also annotated for enrichment in Finland compared to compared to 
non-Finnish–Swedish–Estonian Europeans, as described previously16. 
Annotation with known prior GWAS loci was performed as previously 
described16. In brief, for each independent association, we anno-
tated every phenotype in the GWAS Catalog that was significantly 
associated with either (1) the lead posterior inclusion probabilities 
(PIP) variant or (2) any variant in the credible set. Similar annota-
tion was performed for metabolite associations from the MetSIM 
study38 (Supplementary Note). Each locus was also annotated with 
SNP2GENE in FUMA version v1.3.5d (fuma.ctglab.nl/snp2gene/) for 
chromatin interactions (Supplementary Table 12), expression QTL 
(eQTL) associations (Supplementary Table 6) and prior GWAS hits 
(Supplementary Table 5).

Colocalization
Colocalization was performed on all fine-mapped regions as previously 
described for the FinnGen study16. In brief, the probabilistic model 
to integrate GWAS and eQTL data was eCAVIAR39, but the input PIPs 
were estimated by the SuSiE algorithm17. The eCAVIAR method uses 
PIPs for variants in each region to compute a colocalization posterior 
probability (Supplementary Note). The intersection of variants in cred-
ible sets was then checked across multiple phenotypes from FinnGen 
(Supplementary Table 4), GTEx (Supplementary Table 7), eQTL Catalog 
(Supplementary Table 8), GeneRisk (Supplementary Table 9) and the 
UK Biobank (Supplementary Table 10).

Gene enrichment analysis
Gene-level association results from multimarker analysis of genomic 
annotation (MAGMA)40 were used to identify tissue and pathway enrich-
ments using the SNP2GENE and GENE2FUNC modules of FUMA (version 
v1.3.4). The MAGMA results were tested for (1) association with gene 
expression levels in GTEx v8 (Supplementary Table 14 and Supplemen-
tary Fig. 14), (2) enrichment in sets of differentially expressed genes 
identified across tissues from GTEx v8 (Supplementary Table 15 and 
Supplementary Fig. 15), (3) enrichment in gene sets for pathways or 
other biological processes including those defined by KEGG (MsigDB 
c2), gene ontology (GO) biological processes (MsigDB c5) or WikiPath-
ways (Supplementary Table 16) and (4) enrichment in gene sets defined 

by reported associations in GWAS Catalog (Supplementary Table 16 
and Supplementary Fig. 17).

Genetic correlation
We estimated the SNP heritability (h2

SNP) of GDM and pairwise genetic 
correlations (SNP-rg) between GDM and diabetes-related diseases  
and traits using LDSC version 1.0.1. Testing difference of rg  from  
perfect correlation was performed using a one-tailed z-score test:

z =
1 − rg

s.e. (rg)

See Supplementary Note for details on additional genetic cor-
relation analyses.

SCOUTJOY
To compare the heterogeneity of GDM-associated loci’s genetic effects 
in any two disorders, we developed SCOUTJOY (Supplementary Note), 
substantively extending base methods introduced in MR-PRESSO41 that 
address heterogeneity detection while allowing both sample overlap 
and estimation error in both comparison GWASes rather than just one. 
The goal of SCOUTJOY is to estimate the primary relationship in effect 
sizes between the two disorders while accounting for estimation error. 
To accomplish this, we derive estimators for York regression42 with 
a fixed intercept. Global heterogeneity testing was then performed 
based on the overall goodness of fit of the York regression model to 
the observed distribution of effect size estimates. Outlier variants were 
identified as those where the goodness of fit is significantly improved 
by modeling the variant as having its own separate distribution. These 
goodness of fit tests provide an analytic solution replacing the null 
simulations used in MR-PRESSO. Code for SCOUTJOY and York regres-
sion with a fixed intercept is available on GitHub (https://github.com/
aelliott08/SCOUTJOY).

Shared variants analysis
We applied the linemodels package (https://github.com/mjpirinen/
linemodels) to the GWAS summary statistics from T2D GWAS and 
GDM GWAS. The analysis included 28 lead variants from the GWAS 
analyses (13 from GDM and 15 from T2D). We classified the variants 
into two classes based on their bivariate effect sizes. The classes were 
represented by line models whose slopes were estimated using an 
EM algorithm, resulting in values of 1.53 (labeled as class T) and 0.25 
(labeled as class G). For both models, the scale parameters determin-
ing the magnitude of effect sizes were set to 0.2 and the correlation 
parameters determining the allowed deviation from the lines were 
set to 0.99. The membership probabilities in the two classes were 
computed separately for each variant by assuming that the classes 
were equally probable a priori. Because the two GWAS did not have 
overlapping samples, the correlation of their effect estimators was 
set to 0.

Cell-type specificity analyses
To get better resolution on specific cell types, we performed cell-type 
specificity analyses with high-quality single-cell mouse datasets using 
FUMA (https://fuma.ctglab.nl/tutorial#celltype; Supplementary Note). 
First, we identified tissue-level associations with Tabula Muris data43 
identifying significant associations (false discovery rate (FDR) < 0.05) 
with expression in brain and pancreas after Benjamini–Hochberg mul-
tiple testing correction (Supplementary Fig. 30). We then performed 
cell-type specificity analyses as previously described28, augmenting 
Tabula Muris with additional high-quality scRNA-seq of hypothesized 
involved brain regions (Supplementary Note). Analysis was performed 
on genetic summary statistics for both our gestational diabetes GWAS 
and for a recent T2D European meta-analysis dataset18. We also com-
pare the pancreatic results to the analysis of high-quality scRNA-seq 
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of pancreas in humans to assess the impact of known differences in 
human versus mouse pancreatic cellular function and physiology 
(Supplementary Table 35 and Supplementary Fig. 32).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The FinnGen data may be accessed through Finnish Biobanks’ FinnBB 
portal (www.finbb.fi) and THL Biobank data through THL Biobank 
(https://thl.fi/en/web/thl-biobank). The full summary statistics of the 
primary scan of GDM are available at https://www.ebi.ac.uk/gwas/
studies/GCST90296696. GWAS of T2D in males, females, parous 
females and nulliparous females are available at https://www.ebi.ac.uk/
gwas/studies/GCST90296697, https://www.ebi.ac.uk/gwas/studies/
GCST90296698, https://www.ebi.ac.uk/gwas/studies/GCST90296699 
and https://www.ebi.ac.uk/gwas/studies/GCST90296700.
Additional data used for colocalization/annotations are available from 
GWAS Catalog (https://www.ebi.ac.uk/gwas/home), GTEx (https://gtex-
portal.org/home/datasets), EMBL-EPI eQTL Catalog (https://www.ebi.
ac.uk/eqtl/), UK Biobank fine-mapping (https://www.finucanelab.org/
data) and METSIM (https://pheweb.org/metsim-metab/). GeneRisk lipid 
QTL results will be available on GWAS Catalog (https://www.ebi.ac.uk/
gwas/) upon publication of the corresponding manuscript (https://www.
medrxiv.org/content/10.1101/2023.01.21.23284765v1.full). A complete 
list of sources used for annotation with FUMA, including download links, 
are available at https://fuma.ctglab.nl/links and https://fuma.ctglab.nl/
tutorial#datasets; see Supplementary Note for details on datasets used 
in the current analysis. Previous GWAS results on T2D from ref. 18 are 
available from the DIAGRAM Consortium (https://diagram-consortium.
org/downloads.html). GWAS results for glycemic traits are available from 
MAGIC (https://magicinvestigators.org/downloads/). Additional GWAS 
results used for genetic correlation analyses are also all publicly available—
birth weight results from the EGG Consortium (https://egg-consortium.
org/birth-weight-2019.html); BMI, height and WHR results from GIANT 
(https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files); liver fat, NAFLD, T1D and number of 
children results on GWAS Catalog (https://www.ebi.ac.uk/gwas/; 
GCST90029073, GCST008468, GCST90014023 and GCST90029038, 
respectively); hypertension results on NHLBI GRASP (https://grasp.nhlbi.
nih.gov/FullResults.aspx); coronary artery disease (CAD), heart failure 
and AtrialFib results from the Cardiovascular Disease (CVD) Knowl-
edge Portal (https://cvd.hugeamp.org/downloads.html#summary) 
and Sinnott-Armstrong et al. biomaker results on FigShare (https://nih.
figshare.com/articles/dataset/The_meta-analyzed_GWAS_summary_ 
statistics_for_35_lab_biomarkers_described_in_Genetics_of_35_blood_
and_urine_biomarkers_in_the_UK_Biobank_/12355382).

Code availability
GWAS was performed using REGENIE 2.24 (https://rgcgithub.github.
io/regenie/) with the pipeline described at the GitHub for FinnGen 
GWAS pipeline publicly described (https://github.com/FINNGEN/
regenie-pipelines).
Fine-mapping of GWAS signals was performed using SuSIE 0.9.2 
(https://stephenslab.github.io/susieR/index.html) with the FinnGen 
fine-mapping pipeline publicly described (https://github.com/
FINNGEN/finemapping-pipeline).
Colocalization was performed using the FinnGen colocalization 
pipeline that is based on eCAVIAR (https://github.com/FINNGEN/
pheweb-colocalization). Annotations were performed according 
to the FinnGen annotation pipeline (https://github.com/FINNGEN/
autoreporting).
Genetic correlation was performed using LDSC v1.0.1 (https://github.
com/bulik/ldsc).

Gene-level association results from MAGMA were used to identify  
tissues and pathways enrichment using the FUMA modules for 
SNP2GENE v1.3.5d, GENE2FUNC v1.3.4 and cell specificity module 
v1.3.4 (https://fuma.ctglab.nl/).
Comparison of heterogeneity of cross-disorder genetic effects was 
performed using SCOUTJOY v0.0.5 (https://github.com/aelliott08/
SCOUTJOY). Classification of variants based on their bivariate effect 
size was carried out using Linemodels 0.2.0 (https://github.com/
mjpirinen/linemodels).
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