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A global view of aging and Alzheimer’s 
pathogenesis-associated cell population 
dynamics and molecular signatures in 
human and mouse brains

Andras Sziraki1,2,8, Ziyu Lu1,2,8, Jasper Lee1,8, Gabor Banyai    1, Sonya Anderson3, 
Abdulraouf Abdulraouf1,4, Eli Metzner    1,5, Andrew Liao1,4, Jason Banfelder6, 
Alexander Epstein    1,2, Chloe Schaefer    1, Zihan Xu    1,2, Zehao Zhang    1,2, 
Li Gan    7, Peter T. Nelson3, Wei Zhou    1,9  & Junyue Cao    1,9 

Conventional methods fall short in unraveling the dynamics of rare cell 
types related to aging and diseases. Here we introduce EasySci, an advanced 
single-cell combinatorial indexing strategy for exploring age-dependent 
cellular dynamics in the mammalian brain. Profiling approximately  
1.5 million single-cell transcriptomes and 400,000 chromatin accessibility 
profiles across diverse mouse brains, we identified over 300 cell subtypes, 
uncovering their molecular characteristics and spatial locations. This 
comprehensive view elucidates rare cell types expanded or depleted 
upon aging. We also investigated cell-type-specific responses to genetic 
alterations linked to Alzheimer’s disease, identifying associated rare 
cell types. Additionally, by profiling 118,240 human brain single-cell 
transcriptomes, we discerned cell- and region-specific transcriptomic 
changes tied to Alzheimer’s pathogenesis. In conclusion, this research offers 
a valuable resource for probing cell-type-specific dynamics in both normal 
and pathological aging.

Progressive changes in brain cell populations, which can occur dur-
ing aging, may contribute to functional decline and increased risks 
for neurodegenerative diseases such as Alzheimer’s disease (AD)1–4. 
Although the recent advances in single-cell genomics have created 
unprecedented opportunities to explore the cell-type-specific 
dynamics across the entire mammalian brain5–8, most prior stud-
ies relied on a relatively shallow sampling of the brain cell popula-
tions and failed to reveal rare aging or AD-associated cell types. 

Additionally, they were technically limited in several ways, including 
failing to recover isoform-level gene expression patterns and the 
associated chromatin landscape that regulates cell-type-specific 
alterations across aging stages.

Here, we introduced EasySci, a cost-effective single-cell profiling 
strategy based on extensive optimization of single-cell RNA sequencing 
(RNA-seq) by combinatorial indexing9. While the original method has 
been widely used to study embryonic and fetal tissues10,11, it remains 
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1 harboring multiple AD-associated mutations16; and a late-onset AD 
(LOAD) model (APOE*4/Trem2*R47H) that carries two of the highest 
risk factor mutations of LOAD, including a humanized ApoE knock-in 
allele and missense mutations in the mouse Trem2 gene17,18.

In brief, nuclei were extracted from the whole brain and then 
deposited to different wells for indexed RT (RNA) or transposition 
(ATAC), such that the first index indicated the originating sample 
and assay type of any given well. The resulting EasySci libraries (RNA 
and ATAC) were sequenced separately, yielding a total of 20 billion 
paired-end reads. After filtering out low-quality cells and doublets, we 
recovered gene expression profiles in 1,469,111 single nuclei (a median 
of 70,589 nuclei per brain sample; Extended Data Fig. 3a) and chromatin 
accessibility profiles in 376,309 single nuclei (a median of 18,112 nuclei 
per brain sample, Extended Data Fig. 3b) across conditions. Despite 
shallow sequencing depth (~4,340 and ~16,000 raw reads per cell for 
RNA and ATAC, respectively), we recovered an average of 1,788 unique 
molecular identifiers (UMIs) (RNA, median of 935 UMIs) and 5,515 
unique fragments (ATAC, median of 3,918) per nucleus (Extended Data 
Fig. 3c–f), comparable to other published datasets10,11,14.

With UMAP visualization19 and Louvain clustering20, we identified 
31 main cell types by gene expression clusters (a median of 16,370 cells 
per cell type; Fig. 1g), annotated based on cell-type-specific gene mark-
ers2. Each cell type was present in nearly all individuals, except for rare 
pituitary cells (0.09% of the population), which were absent in 3 out 
of 20 individuals (Extended Data Fig. 3g). The cell-type-specific frac-
tions in the global cell population ranged from 0.05% (inferior olivary 
nucleus neurons) to 32.5% (cerebellum granule neurons) (Fig. 1h). An 
average of 74 marker genes were identified for each main cell type 
(defined as at least a twofold expression difference between first- and 
second-ranked cell types; false discovery rate (FDR) of 5%; and tran-
scripts per million (TPM) > 50 in the target cell type; Supplementary 
Table 2). In addition to the established marker genes, we identified 
novel markers that were not previously associated with the respective 
cell types, such as markers for microglia (e.g., Arhgap45 and Wdfy4), 
astrocytes (e.g., Celrr and Adamts9) and oligodendrocytes (e.g., Sec14l5 
and Galnt5) (Extended Data Fig. 3h).

Several integration analyses were performed to validate the 
recovered cell types across different layers. First, we applied a 
deep-learning-based strategy21 to integrate transcriptome and chro-
matin accessibility profiles, yielding 31 main cell types (Fig. 1g). The 
gene body accessibility and expression of marker genes across cell 
types were highly correlated (Fig. 1i), as well as the fraction of each cell 
type (Pearson correlation r = 0.95, P = 6.68 × 10−16) (Fig. 1j). We further 
investigated the epigenetic controls of the diverse brain cell types 
through differential accessibility analysis (Extended Data Fig. 4a). We 
identified a median of 474 differential accessible peaks per cell type 
(FDR of 5%, TPM > 20 in the target cell type; Extended Data Fig. 4b,c 

restricted to gene quantification proximal to the 3’ end and limited in 
efficiency and cell recovery rate11. EasySci provided improved condi-
tions for cell lysis, fixation, sample preservation, enzymatic reaction, 
oligonucleotide design, and purification methodologies (Supplemen-
tary Table 1). Several test conditions were inspired by optimizations 
described in recently developed or optimized single-cell techniques12,13. 
The major features of EasySci include (i) 1 million single-cell transcrip-
tomes were prepared for ~US $700 (library preparation cost only, not 
including personnel or sequencing cost; Fig. 1a–c); (ii) reverse tran-
scription (RT) with indexed oligo-dT and random hexamer primers 
was achieved, thus recovering cell-type-specific gene expression with 
full gene body coverage (Fig. 1d); (iii) cell recovery rate, as well as the 
number of transcripts detected per cell, were substantially improved 
through optimized nuclei storage, enzymatic reactions and improved 
primer design (Fig. 1e and Extended Data Fig. 1); and (iv) an exten-
sively improved single-cell data processing pipeline was developed for 
both gene counting and exonic counting using paired-end single-cell 
RNA-seq data (Methods).

Leveraging the technical innovations during the development of 
EasySci-RNA, we further optimized the single-cell chromatin accessibil-
ity profiling method by combinatorial indexing (sci-ATAC-seq3)14,15. The 
key optimizations include (i) a tagmentation reaction with indexed Tn5 
that are fully compatible with indexed ligation primers of EasySci-RNA; 
(ii) a modified nuclei extraction and cryostorage procedure to further 
increase the library complexity. (A comprehensive quality comparison 
with other single-cell sequencing assay for transposase-accessible 
chromatin (scATAC) protocols is shown in Extended Data Fig. 2.) It is 
noteworthy that the assay for transposase-accessible chromatin with 
sequencing (ATAC-seq) signal specificity of EasySci-ATAC parallels the 
original sci-ATAC-seq14,15, albeit lower than 10x ATAC-seq, potentially 
due to the indexed Tn5 used in single-cell combinatorial indexing. The 
detailed protocols for EasySci are included as supplementary files (Sup-
plementary Protocols 1 and 2) to facilitate individual laboratories to 
cost-efficiently generate gene expression and chromatin accessibility 
profiles from millions of single cells.

Results
A single-cell catalog of the mouse brain in aging and AD
We first applied EasySci to characterize cell-type-specific gene 
expression, and chromatin accessibility profiles across the entire 
mouse brain sampling at different ages, sexes and genotypes  
(Fig. 1f). We collected C57BL/6 wild-type (WT) mouse brains at 3 months 
(n = 4), 6 months (n = 4) and 21 months (n = 4). To gain insight into the 
early molecular changes associated with the pathophysiology of AD, 
two mutants from the same C57BL/6 background at 3 months were 
included: an early-onset AD (EOAD) model (5xFAD) that overexpresses 
mutant human amyloid-beta precursor protein and human presenilin 

Fig. 1 | EasySci enables high-throughput and low-cost single-cell 
transcriptome and chromatin accessibility profiling across the entire 
mammalian brain. a, EasySci-RNA workflow. Key steps are outlined in the 
texts. scPE, single-cell paired end. b, Pie chart showing the estimated cost 
compositions of library preparation for profiling 1 million single-nucleus 
transcriptomes using EasySci-RNA. c, Bar plot comparing different single-cell 
RNA-seq methods in terms of their cost of the library preparation for 1 million 
single-nucleus transcriptomes. The cost of the other techniques (10x Genomics, 
Drop-seq, Seq-well, inDrops, SPLiT-seq) were calculated using data from previous 
publications13,33,83,84. d, Density plot showing the gene body coverage comparing 
single-cell transcriptome profiling using 10x Genomics and EasySci-RNA. 
Reads from oligo-dT and random hexamers priming are plotted separately for 
EasySci-RNA. Short dT, oligonucleotides composed of a stretch of 15 thymine 
nucleotides. RandomN, oligonucleotides composed of 8 random nucleotides. 
e, Box plot showing the number of unique transcripts detected per mouse brain 
nucleus comparing 10x Genomics v2 (ref. 83) (n = 5,351 cells) and an EasySci-RNA 
library (n = 13,440 cells) at similar sequencing depth (~3,800 raw reads per cell). 

For the box plot, middle lines represent medians, upper and lower box edges 
represent first and third quartiles, respectively, and whiskers represent 1.5 times 
the interquartile range (IQR). f, Experiment scheme to reconstruct a brain cell 
atlas of both gene expression and chromatin accessibility across different ages, 
sexes and genotypes. g, UMAP visualization of mouse brain cells by single-cell 
transcriptome (top) and chromatin accessibility (bottom), colored by main cell 
types. h, Bar plot showing the mean and standard error of the cell-type-specific 
proportions of the brain cell population across samples (n = 20 animals) profiled 
by EasySci-RNA. i, Heatmap showing the aggregated gene expression (top) and 
gene body accessibility (bottom) of the top 10 marker genes (columns) in each 
main cell type (rows). j, Scatter plot showing the fraction of each cell type in 
the global brain population by single-cell transcriptome (x axis) or chromatin 
accessibility analysis (y axis). k,l, Mouse brain sagittal (k) and coronal (l) sections 
showing the H&E staining (left) and the inferred localizations of main neuron 
types through non-negative least squares (NNLS)-based integration (right), 
colored by main cell types in h.
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and Supplementary Table 3). Key cell-type-specific transcription factor 
(TF) regulators were discovered by correlation analysis between motif 
accessibility and expression patterns, such as Spi1 in microglia22, Nr4a2 
in cortical projection neurons 3 (ref. 23) and Pou4f1 in inferior olivary 
nucleus neurons24 (Extended Data Fig. 4d).

We next integrated our dataset with a 10x Visium spatial tran-
scriptomics dataset through a modified NNLS approach (Methods). As 
expected, specific brain cell types were mapped to distinct anatomical 
locations (Fig. 1k,l), especially for region-specific cell types such as 
cortical projection neurons (clusters 6–8), cerebellum granule neurons 
(cluster 3) and hippocampal dentate gyrus neurons (cluster 9). These 
integration analyses confirmed the annotations and spatial locations 
of main cell types in our single-cell datasets.

In-depth view of cellular subtypes in the mammalian brain
Rather than performing subclustering analysis with the gene expression 
alone, we exploited the unique feature of EasySci-RNA (that is, full gene 
body coverage) by incorporating both gene counts and exonic counts 
for principal-component analysis followed by unsupervised cluster-
ing. The approach substantially increased the clustering resolution, 
as shown in a microglia subtype example (Fig. 2a,b). Leveraging this 
subclustering strategy, we identified a total of 359 subclusters, with 
a median of 1,038 cells in each group (Fig. 2c). All subclusters were 
contributed by multiple individuals, with a median of nine exonic 
markers enriched in each subcluster (Extended Data Fig. 5a,b and 
Supplementary Table 4). Some subtype-specific exonic markers were 
not detected by conventional differential gene analysis (for example, 
Map2-ENSMUSE00000443205.3 in microglia-8; Extended Data Fig. 5c). 
Notably, our strategy favors detecting extremely rare cell types, such 
as rare pinealocytes (choroid plexus epithelial cells 7, 21 cells, marked 
by Tph1 and Ddc25) and tanycytes (vascular leptomeningeal cells-2, 35 
cells, marked by Fndc3c1, Scn7a26) (Extended Data Fig. 5d–g).

About 75% of the 359 cell subclusters can be validated through 
integration analysis with other datasets (Fig. 2d). Our initial integration 
with a single-cell dataset featuring highly detailed cell type annota-
tions2 enables the validation of 112 subclusters, each matching with cell 
types documented in the previous study2 (Fig. 2e and Supplementary 
Table 5). These corresponding cell types were further validated by 
their cell-type-specific markers, exemplified by neuronal interme-
diate progenitor cells, vascular smooth muscle cells, and olfactory 
ensheathing cells (Fig. 2f). Next, we integrated the 10x Visium spatial 
transcriptomics datasets27 and determined the region-specificity of the 
recovered cell types or subtypes27 (Extended Data Fig. 5h,i). We then 
expanded the analysis to include an extensive spatial transcriptomics 
dataset encompassing 75 coronal sections of the mouse brain27,28 and 
discovered 122 subclusters with high spatial mapping scores (Sup-
plementary Table 5 and Methods). For instance, our analysis revealed 
that choroid plexus epithelial cells-6 were primarily situated in the 

lateral ventricle, whereas cortical projection neurons 1-1 were pre-
dominantly found in the amygdala (Fig. 2g). As the third approach to 
confirm these subclusters, we utilized a deep-learning-based method21 
to integrate the snRNA-seq and snATAC-seq data from each main cell 
type and recovered 224 ‘corresponding subclusters’ between the two 
molecular layers (Fig. 2h,i). As expected, the subclusters validated 
by ATAC-seq data exhibit more markers than those not validated  
(Fig. 2j). For example, the chromatin landscape for all 24 subclusters 
from cortical projection neurons 1 cells was recognized and validated 
by the significant enrichment of marker gene expression and activity 
in the target subcluster (Fig. 2k). We further explored cis-regulatory 
elements at the cell subtype resolution by correlation-based linkage 
analysis and unveiled a global network of putative enhancer-gene pairs 
shaping brain cell heterogeneity (Extended Data Fig. 6).

We next investigated key molecular programs underlying diverse 
cellular subtypes by clustering genes based on their expression vari-
ance across all 359 cell subclusters (Extended Data Fig. 7). We identified 
21 gene modules (GMs), with the largest one (GM1) corresponding to a 
group of housekeeping genes. Several GMs were enriched in specific 
cell subtypes, such as the ependymal cell-specific GM29 (GM11), and 
pituitary cells subtype-6 specific GM (GM9)30. Similar analysis revealed 
programs in other rare subtypes, such as microglia-13 (GM19), vascular 
leptomeningeal cells-12 (GM20) and choroid plexus epithelial cells-7 
(GM2). Remarkably, rare proliferating cells were identified through a 
cell-cycle-related GM (GM6), which include both conventional pro-
liferating markers (for example, Mki67), and a group of less-studied 
lncRNAs (for example, Gm29260 and Gm37065) (Extended Data  
Fig. 7c and Supplementary Table 6).

Aging-associated population dynamics at subtype resolution
To obtain a global view of brain cell population dynamics across the 
adult lifespan, we first quantified the cell-type-specific fractions recov-
ered from each individual mouse. Differential abundance analyses were 
conducted across all 359 subclusters, yielding 45 and 29 significantly 
changed subclusters during early growth (between 3 and 6 months) and 
aging (between 6 and 21 months; Fig. 3a and Supplementary Tables 7 
and 8), respectively. Significantly changed cell subtypes were strongly 
correlated between genders (Fig. 3b).

Consistent with the growth of the olfactory bulb (OB) during early 
development31, we observed significant expansion in all OB neuron 
subtypes during this phase. Meanwhile, a rare astrocyte subtype (AS-
14, Lyn+ Adgrb1+) and a vascular leptomeningeal cell subtype (VLC-4, 
Sox10+ Mybpc1+) exhibited significant expansion in the same period 
(Fig. 3c). AS-14 featured with genes (for example, BAI1) involved in 
the clean-up of apoptotic neuronal debris produced during brain 
fast growth32, and VLC-4 highly expressed genes (for example, Sox10 
and Mybpc1 (refs. 33,34)) involved in the growth of axons35. Both sub-
clusters were spatially mapped to the OB region, suggesting their 

Fig. 2 | Identification of cellular subtypes in the mouse brain. a, Example 
UMAPs of microglia cells subjected to subclustering analysis based on gene 
expression alone (middle) or both gene and exon expression (right), colored  
by subcluster ID derived from combined gene and exon information.  
b, UMAP plots same as a, showing the expression of an exonic marker Itpkb-
ENSMUSE00000591614.4 of microglia subcluster 12. c, For each main cell type, 
bar plot showing the number of subclusters (left) and dot plot showing the 
number of cells from each subcluster (right). Two rare subclusters (choroid 
plexus epithelial cells-7 and vascular leptomeningeal cells-2) are circled.  
d, Venn diagram showing the number of validated subclusters using integration 
analysis with Zeisel et al.2, Ortiz et al.28 or the EasySci-ATAC dataset. e, Heatmap 
illustrating the similarity score between cell types derived from EasySci (rows) 
and Zeisel et al.2 (columns), colored by the min-max normalized beta values 
obtained from cell-type correlation analysis (Methods). f, Dot plot showing 
the expression of example GMs unique to subclusters across paired cell types 
between the EasySci dataset and Zeisel et al.2, colored by main cell types  

(same as Fig. 2c). g, Spatial distributions of example subclusters, inferred using a 
brain spatial transcriptomics atlas28 and the cell2location approach27, colored by 
matching score. h, Scheme outlining scRNA and scATAC integration analyses.  
i, Histogram showing the log2 fold change of marker gene expression from 
RNA-seq (left) and marker gene activity from ATAC-seq (right) per subcluster 
compared to the rest of cells. Predicted subclusters with log2 fold change of gene 
activity > 0.25 between the target subcluster and the rest of cells and contain 
more than 10 cells are considered matched. j, Box plots illustrate the number 
of markers comparing the subclusters that could be validated in ATAC-seq data 
(n = 224 subclusters) to those that could not (n = 135 subclusters). Two-sided 
Wilcoxon rank-sum test was used. ****, P < 0.0001 (P = 7.8 × 10−8). k, Example 
subcluster integration results of cortical projection neurons 1. Left: UMAP plots 
demonstrating the overlap of two molecular layers, color-coded by subcluster ID 
Right: heatmaps showing the enrichment of gene activity and gene accessibility 
of matching subclusters.
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potential involvement in OB expansion (Fig. 3c). In contrast to the early 
growth stage, most OB neurons remained relatively stable during aging, 
with only a few subtypes showing significant changes. Key examples 
include the expansion of an OB neuron subtype corresponding to 
excitatory neurons in the mitral cell layer of the OB region36 (OBN 3–3, 
marked by Cpa6 and Col23a1), and the depletion of OB neuroblasts2,37  
(OBN 1–11, marked by Robo2 and Prokr2). Integration analysis with 
spatial transcriptomics datasets indicate these cell types were mapped 
to different regions of the OB (Fig. 3c).

More than twenty brain cell subtypes showed a marked reduction 
across the adult lifespan. For example, the most depleted popula-
tions in the aged brain include OB neuroblasts (OBN 1–11, marked 
by Prokr2 and Robo22,37), OB neuronal progenitor cells (OBN 1–17, 
marked by Mki67 and Egfr38), and dentate gyrus neuroblasts (DGN-8, 
marked by Sema3c and Igfbpl139) (Fig. 3d). DG neuroblasts declined 
even in the early growth, suggesting an earlier decline of DG neuro-
genesis compared to OB neurogenesis. In contrast to age-associated 
depletion of neurogenesis progenitors, oligodendrocyte progeni-
tors (OPC-4, marked by Pdgfra and Mki67) remained relatively stable. 
However, newly formed oligodendrocytes (OLG-6, marked by Prom1 
and Tcf7l1 (ref. 38,40)) and committed oligodendrocyte precursors 
(OPC-6, marked by Bmp4 and Enpp6 (ref. 38,40,41)) decreased dur-
ing aging, indicating impaired oligodendrocyte differentiation. The 
age-associated population dynamics were further validated using 
the scATAC-seq dataset (Fig. 3d and Extended Data Fig. 8a,b) and our 
companion study in which we tracked cell dynamics via metabolic 
labeling42. Furthermore, we identified subtype-specific TF regulators 
using both gene expression and TF motif accessibility. This includes 
recognized regulators of neurogenesis (for instance, Sox2 and E2f243,44), 
demonstrating the potential of our datasets to unveil key epigenetic 
signatures of aging-associated cell subtypes (Fig. 3e).

A total of 14 cell subtypes notably expanded in the aged brain, 
such as a microglia subtype (MG-9, Apoe+, Csf1+) corresponding to a 
previously reported DAM45, and a reactive oligodendrocyte subtype 
(OLG-7, C4b+, Serpina3n+46,47). With the scATAC-seq dataset, we further 
confirmed its expansion (Fig. 3f and Extended Data Fig. 8b,c) and iden-
tified its associated TFs. For example, the OLG-7 associated TF, Stat3 
(Fig. 3e), plays a critical role in regulating inflammation and immunity 
in the brain48. We also performed a spatial transcriptomics experiment 
using adult and aged mouse brains. Strikingly, we detected a signifi-
cant enrichment of the reactive oligodendrocyte-specific markers  
(for example, C4b and Serpina3n) around the subventricular zone 
(SVZ) (Fig. 3g,h), indicating an age-related activation of inflammation 
signaling around the adult neurogenesis niche.

We next explored the subtype manifestation of aging signatures 
by differentially expressed (DE) gene analysis. We identified 7,135 
aging-associated signatures across 359 subclusters (Supplementary 
Table 9 and Extended Data Fig. 9a). Of the 580 genes significantly 

altered in multiple (≥3) subtypes, 241 showed consistent directions. 
For example, Nr4a3 (genes involved in DNA repair49) was significantly 
decreased in aged neuron subtypes (striatal neurons, OB neurons, and 
interneurons). Hdac4, encoding a histone deacetylase50, decreased 
in aged astrocytes and ependymal cells. Insulin-degrading enzyme 
(IDE), involved in amyloid-beta clearance51, also increased in neuron 
subtypes. We also identified age-related changes in non-coding RNAs, 
many with high cell-type specificity (for example, B230209E15Rik in 
cortical projection neuron subtypes), but were not well characterized 
previously (Extended Data Fig. 9b).

AD pathogenesis-associated gene signatures and cell subtypes
Through comparison of subcluster fractions in two AD models to 
age-matched WT controls (3 months old), we detected 16 and 14 signifi-
cantly changed subclusters (FDR of 5%, at least twofold change) in the 
EOAD (5xFAD) model and LOAD (APOE*4/Trem2*R47H) model, respec-
tively (Fig. 4a and Supplementary Tables 10 and 11). Most significantly 
altered subtypes correlated between genders (Fig. 4b) and between the 
two AD models, even though they had distinct genetic perturbations in 
different cell types (Fig. 4c). For example, a rare choroid plexus epithe-
lial cell subtype (CPEC-4) was strongly depleted (by more than twofold 
decrease) in both models. This cell type is marked by significant enrich-
ment of multiple mitochondrial genes linked to neuroprotective fac-
tors against neurodegeneration (for example, mt-Rnr2 (ref. 52)) or Tau 
protein levels in cerebrospinal fluid (mt-Rnr1 and mt-Nd553). Through 
spatial transcriptomics analysis, we verified its location around the SVZ 
and confirmed its depletion in the EOAD (5xFAD) model, suggesting 
mitochondrial dysfunction in choroid plexus epithelial cells plays a 
role in neurodegenerative diseases (Fig. 4d,e).

By contrast, another choroid plexus epithelial cell subtype (CPEC-
6; marked by Sptlc3[+54, Fer1l6+) expanded in both AD models (over 
twofold increase) (Fig. 4b). A similar expansion was observed in a 
rare interbrain and midbrain neuron subtype (IMN 1–13, marked by 
Col25a1+, Ndrg1+) that expresses Col25a1, a membrane-associated 
collagen reported to promote intracellular amyloid formation in 
mouse models55 (Fig. 4c). Spatial transcriptomic analysis confirmed 
the up-regulation of IMN 1–13 specific gene markers in the thalamus 
region of the 5xFAD mouse brain (Fig. 4d,e), providing further valida-
tion of the AD-related neuron subtype change. Additionally, a septal 
nuclei neuron subtype IMN 2-9 (marked by Prdm16 and Ano2) that sig-
nificantly overexpress in both AD model GMs related to axonogenesis 
(for example, Nrp1 and Slit2) and synaptogenesis (for example, Ptprd 
and Nrxn1) (ref. 56) was also significantly expanded in both AD models 
(Fig. 4f–h), aligning with the observed enlargement of the septal nuclei 
region several years before the onset of memory decline57.

Meanwhile, we observed a significant expansion of microglia sub-
type 9 (marked by Apoe and Csf1) in early-onset 5xFAD mice, aligning 
with previous reports45. This disease-associated microglia (DAM) also 

Fig. 3 | Identifying brain cell population changes across the lifespan at 
subtype resolution. a, Dot plots showing the log-transformed cell-type-specific 
fraction changes of main cell types (circles) and subclusters (dots) between 
adult versus young (left) and between aged versus adult (right) from EasySci-
RNA data. Significantly changed subclusters were colored by the direction of 
changes. Representative subclusters were labeled along with top gene markers. 
AS, astrocytes; BG, Bergmann glia; CGN, cerebellum granule neurons; CPEC, 
choroid plexus epithelial cells; DGN, dentate gyrus neurons; EC, endothelial cells; 
HN; habenula neurons; IMN 1, interbrain and midbrain neurons 1; MG, microglia; 
OBN 1, OB neurons 1; OBN 3; OB neurons 3; OLG, oligodendrocytes; OPC, 
oligodendrocyte progenitor cell; VLC; vascular leptomeningeal cells. b, Scatter 
plots showing the correlation of the subcluster specific fraction changes between 
males and females in the early growth stage (top) and the aging stage (bottom), 
with a linear regression line. The most significantly changed subclusters are 
annotated on the plots. c, Examples of development- or aging-associated 
subclusters and their spatial positions. Left: scatter plots showing the aggregated 

expression of subcluster-specific marker genes across all subclusters. Right: 
plots showing the aggregated expression of subcluster-specific marker genes 
across a brain sagittal section in 10x Visium spatial transcriptomics data. d, Line 
plots showing the relative fractions of depleted subclusters across three age 
groups identified from EasySci-RNA (left) and EasySci-ATAC (right). e, Scatter 
plots showing the correlated gene expression and motif accessibility of TFs 
across subclusters enriched in OB neurons 1–17 (Sox2 and E2f2, left and middle) 
and oligodendrocytes-7 (Stat3, right), together with a linear regression line. 
f. Box plots showing the fractions of the reactive microglia (left) and reactive 
oligodendrocytes (right) across three age groups (young: n = 4 mice, adult: 
n = 4 mice, aged: n = 4 mice) profiled by EasySci-RNA (top) and EasySci-ATAC 
(bottom). g,h, Mouse brain coronal sections showing the expression level of 
C4b (g) and Serpina3n (h) in the adult (left) and aged (right) brains from spatial 
transcriptomics analysis. Boxes in box plots indicate the median and IQR with 
whiskers indicating 1.5× IQR.
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expanded in aged mice but was not evident in the late-onset APOE*4/
Trem2*R47H model at 3 months of age (validated by both RNA and 
ATAC), potentially indicating a correlation with disease onset (Fig. 4i). 
We further investigated its DE genes (Extended Data Fig. 8d) and key 
TFs exhibiting consistency between cell-type-specific gene expres-
sion and motif accessibility (Fig. 4j). The enriched TFs were reported 
to be involved in microglia expansion during aging and AD58–60. Addi-
tionally, we quantified the enrichment of genetic variants linked to 
human traits61 and observed significant enrichment of AD heritability 
in microglia cells at both the main cell type level and particularly in the 
microglia-9 subtype, highlighting the role of DAM in AD pathogenesis 
(Extended Data Fig. 8e,f).

We identified subtype-specific manifestations of key AD-related 
molecular signatures. In the 5xFAD (EOAD) model, we found 6,792 
subcluster-specific DE genes, whereas the APOE*4/Trem2*R47H 
(LOAD) model had 7,192 subcluster-specific DE genes (Extended Data 
Fig. 9c,f and Supplementary Tables 12 and 13). The Apoe gene was 
globally down-regulated in the APOE*4/Trem2*R47H mice, possibly 
due to the replacement of the Apoe gene with the human sequence. 
Many AD-associated gene signatures exhibited consistent changes 
across cellular subtypes, such as increased stress-related markers 
(for example, Hsp90aa1 and Txnrd1) in neuron subtypes in the 5xFAD 
mice. The expression of Reln62 decreased in various cell types in 
both models, aligning with previous report of Reln depletion before 
the onset of amyloid-beta pathology in the human frontal cortex63. 
Other intriguing observations included the down-regulation of 
Tlcd4, a gene involved in lipid trafficking and metabolism64 in mul-
tiple subclusters in the 5xFAD mice. Interestingly, despite genetic 
differences and disease onsets in the two AD models, there were 
remarkably consistent alterations in cell-type-specific molecular 
profiles. We identified 559 subcluster-specific DE genes shared 
between both AD mutants, suggesting common molecular mecha-
nisms between early- and late-onset AD models (Extended Data 
Fig. 9g). We also investigated the connection between aging and 
AD-associated changes using transcriptomic aging clocks65, reveal-
ing significantly accelerated biological aging in both AD models 
(Extended Data Fig. 9h). Although most cell types demonstrated 
accelerated aging-related molecular changes, specific cell types 
only exhibited these signs in LOAD (Extended Data Fig. 9i). This 
is further validated by consistent cell-type-specific changes of 
aging-associated gene signatures (for example, Neat1 and Zfp423) 
in aged and AD models (Extended Data Fig. 9k).

Detection of dysregulated gene signatures in human AD 
brains
To compare molecular signatures associated with AD pathogenesis in 
mouse models and human patients, we sequenced a total of 118,240 
single-nuclei transcriptomes (a median of 5,585 nuclei per sample, with 
the sequencing depth of 13,850 raw reads and a median of 1,109 UMIs 
per nucleus; Extended Data Fig. 10a,b) from 24 human brain samples 

across two brain regions (hippocampus, superior and middle tempo-
ral gyrus (SMTG)), derived from six patients with AD and six age- and 
gender-matched controls (Supplementary Table 14). Thirteen main 
cell types were identified through integration analysis with the mouse 
dataset and validated by the specific expression of known markers  
(Fig. 5a and Extended Data Fig. 10c–e).

A total of 4,171 and 2,149 cell-type-specific DE genes were identi-
fied in the hippocampus and SMTG, respectively (Fig. 5b and Supple-
mentary Table 15). Exactly 349 genes were significantly changed in the 
same cell type from two distinct regions, among which 332 were altered 
consistently (Fig. 5c). For example, oligodendrocytes in AD samples 
from both regions exhibited decreased expression of the oligodendro-
cyte terminal differentiation factor OPALIN66 and the oxidation stress 
protector OXR1 (ref. 67). Concurrently, we observed an up-regulation 
of genes related to programmed cell death (for example, FLCN and 
RASSF2)68,69, suggesting an elevated stress in oligodendrocytes from AD 
brains. Other examples include the microglia-specific up-regulation 
of PTPRG70, and astrocyte-specific down-regulation of several trans-
membrane transporters (for example, AQP4) and neurotransmitter 
metabolism enzymes (for example, GLUD1)71,72.

Interestingly, some AD-associated gene signatures exhibited 
region-specific expression patterns. For example, GPNMB, encoding 
a transmembrane glycoprotein associated with microglia activation 
in AD brains73, showed increased expression in the microglia from 
the hippocampus but not from the SMTG. On the other hand, MMP24, 
encoding a member of the metalloproteinase family implicated in 
AD pathogenesis74, showed increased expression in cortical projec-
tion neurons unique within the SMTG (Fig. 5d). Notably, inhibition 
of MMP24 has been demonstrated to decrease amyloid-beta levels 
and promote cognitive functions in mouse models75, suggesting its 
potential role as a novel therapeutic target for AD.

Finally, we explored the human-mice relevance for AD-associated 
gene signatures and molecular pathways. Despite differences in the 
species and disease stages between the two datasets, several genes 
encoding heat shock proteins (for example, HSP90AA1 and HSPH1) 
were up-regulated across multiple cell types in both species (Fig. 5e). 
The elevated chaperon system potentially reduces the formation of 
toxic oligomeric assemblies in AD brains76, further validating the 
dysfunction of proteostasis as a molecular marker of AD77. Meanwhile, 
we identified down-regulated genes in both human and mice. One of 
the examples, PLP1, was reported as a subtype-specific driver gene 
contributing to AD pathogenesis78. Another gene, PDE10A, plays a key 
role in promoting neuronal survival, with its reduction detected in 
our datasets and multiple neurodegenerative diseases (for example, 
Huntington’s disease79 and Parkinson’s disease80) (Fig. 5f). Impor-
tantly, the above-mentioned trends were readily validated by another 
single-cell dataset investigating AD in the human prefrontal cortex6 
(Extended Data Fig. 10f). In summary, the human-mice relevance 
analysis identified species-conserved genetic programs associated 
with AD pathogenesis.

Fig. 4 | Identifying AD pathogenesis-associated cell subtypes. a, Dot plots 
showing the log-transformed fold changes of main cell types (circles) and 
subclusters (dots) comparing EOAD versus WT (left) and LOAD versus WT (right). 
Significantly changed subclusters were colored by the direction of changes. 
Representative subclusters were labeled along with top gene markers. b, Scatter 
plots showing the correlation of the log fold change of subclusters (top: EOAD 
versus WT; bottom: LOAD versus WT) between males and females. c, Scatter plot 
showing the correlation of the log fold change of subclusters in two AD models 
(both compared with the WT). Only subclusters with significant changes in at 
least one AD model are included. Black/gray reflects overlapping dots. d, Scatter 
plots showing the aggregated expression of gene markers of two cell subtypes 
(top: CPEC-4; bottom: the IMN 1–13) across all subclusters from EasySci-RNA 
data. e, Brain coronal sections showing the spatial expression of subtype-specific 
gene markers of two subtypes (top: CPEC-4; bottom: the IMN 1–13) in the WT 

and EOAD brains in 10x Visium data. f, Scatter plot showing the aggregated 
expression of gene markers of IMN 2–9 across all subclusters from EasySci-RNA 
data (left) and the mapping score per pixels of the IMN 2–9 subcluster cells on the 
bregma 0.945 mm coronal section highlighting the lateral septal nucleus region28 
(right). g, Box plots showing the fraction of IMN 2–9 cells across conditions (WT: 
n = 4 mice, EOAD: n = 4 mice, LOAD: n = 4 mice) profiled by EasySci-RNA. h, GM 
expression differences in both AD models against WT control (left) and the top 
enriched Gene Ontology (GO) biological processes pathways of module 5 genes 
(right). i, Box plots showing the fraction of microglia-9 cells across conditions 
(WT: n = 4 mice, EOAD: n = 4 mice, LOAD: n = 4 mice) profiled by EasySci-RNA 
(left) or EasySci-ATAC (right). j, Scatter plot showing the correlated gene 
expression and motif accessibility of four TFs enriched in microglia-9, together 
with a linear regression line. Boxes in box plots indicate the median and IQR with 
whiskers indicating 1.5× IQR.
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Discussion
In this study, we introduced EasySci, a cost-effective technical frame-
work for individual laboratories to generate gene expression and 

chromatin accessibility profiles from millions of single cells. We used 
EasySci to analyze 1.5 million single-cell transcriptomes with full gene 
body coverage and 380,000 chromatin accessibility profiles across 
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Fig. 5 | Identifying AD pathogenesis-associated gene expression signatures 
across regions and cell types in human brains. a, UMAP visualization of 
single-cell transcriptomes of all human brain cells, colored by main cell types 
(left), region (middle) and conditions (right). b, Bar plot showing the number of 
DE genes between AD and control samples in each cell type, colored by whether 
they are unique to each region or shared between two regions. Choroid plexus 
epithelial cells and vascular leptomeningeal cells were not included into the 
differential gene expression analysis in SMTG due to their low cell numbers. c. 
We detected 394 DE genes significantly changed within the same main cell type 
in both regions. The scatter plot shows the correlation of the log2-transformed 

fold changes of these 394 shared DE genes in the hippocampus (x axis) and in 
SMTG (y axis). Key genes are annotated and colored by their corresponding main 
cell types. d, Heatmaps showing examples of region-specific DE genes for the 
hippocampus (left) and SMTG (right). Gene expressions were quantified as TPM 
in the corresponding cell types in each group, and normalized to the maximum 
expression across groups. e,f, Volcano plots showing the examples of top DE 
genes between the AD and control samples across main cell types in human 
brains (e) or between EOAD and WT samples across cell subclusters in mouse 
brains (f). Highlighted genes are colored by the main cell-type identity.
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mammalian brains of different ages and genotypes. The datasets 
enable the identification of over 300 cellular subtypes throughout 
the brain, including highly rare cell types representing less than 
0.01% of the total brain cell population. Furthermore, we discovered 
region-specific effects attributable to aging and AD and examined the 
manifestation of molecular signatures associated with aging and AD 
on a cell-type-specific basis.

As highlighted by our subcluster level analysis, the effects of aging 
and AD on the global brain cell population are profoundly cell-type 
specific. Although most brain cell types stay relatively stable under 
various conditions, we identified over 50 cell subtypes exhibiting over 
twofold change in brains affected by aging and AD models. Many of 
these cell subtypes were rare and overlooked in conventional single-cell 
analysis. For example, the aging brain is characterized by the depletion 
of both rare neuronal progenitor cells and differentiating oligoden-
drocytes, associated with the enrichment of a C4b+ Serpina3n+ reactive 
oligodendrocyte subtype surrounding the SVZ, suggesting a potential 
interplay between oligodendrocytes, localized inflammatory signals 
and the stem cell niche.

The lack of reliable mouse models remains a big challenge in study-
ing late-onset AD. The novel APOE*4/Trem2*R47H model aims to over-
come this limitation by introducing two of the strongest late-onset 
AD-associated mutations81. We found consistent molecular and cellular 
population dynamics between the well-established 5xFAD and the 
novel APOE*4/Trem2*R47H model. For example, we observed shared 
subtypes that were depleted (for example, mt-Cytb+ mt-Rnr2+ choroid 
plexus epithelial cell) or enriched (for example, Col25a1+ Ndrg1+ inter-
brain and midbrain neuron) in both early- and late-onset AD mutant 
brains. Meanwhile, differences were also observed between the two 
AD models, as expected by the different onset times. The absence of 
an increase in the DAM population in the LOAD model may be due to 
its lack of amyloid deposition82 or by genetic perturbations, as both 
Trem2 and Apoe play a role in the activation of this cell population45.

In addition, we investigated AD-associated gene signatures in 
human brains by profiling over 100,000 single-nucleus transcriptomes 
derived from 24 human brain samples from control and AD patients, 
across two distinct anatomical locations. Although most AD-associated 
gene dynamics are profoundly cell-type and region specific, we identi-
fied dysregulated genetic signatures that are conserved between dif-
ferent locations in the human brains. Moreover, integrating the human 
and mouse brain datasets further revealed molecular pathways shared 
between human AD patients and mouse AD models, which suggests 
that the mouse AD model can serve as a model system to investigate 
the function and regulation of these conserved features associated 
with AD or neuronal dysfunction.

Of note, there are several inherent limitations of the study. First, 
the analysis covers only around 2% of the total mouse brain popu-
lation (estimated at approximately 100 million cells), which means 
extremely rare cell subtypes may still be overlooked. Additionally, our 
relatively shallow sequencing depth might hinder the detection of lowly 
expressed transcripts or minor aging-related cellular state changes. 
Nevertheless, the validity of our key biological findings is reinforced 
by the consistent results across different genders (male versus female), 
genotypes (EOAD versus LOAD), and orthogonal approaches (such as 
comparisons between single-cell transcriptome, chromatin acces-
sibility or spatial transcriptomics). This lends significant credence to 
our discoveries, even when considering the limitations of the study.

In summary, we have showcased the power of highly scalable 
single-cell genomics to delve into the dynamics of rare cell types, 
uncovering novel subtypes associated with aging and disease. Though 
our focus was on brain tissues, the strategic approach could be read-
ily extended to systematically explore cellular states across an entire 
organism. Such exploration could illuminate the rare vulnerable cell 
populations to aging and diseases, opening up pathways to develop 
targeted therapeutic strategies.
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Methods
Animals
C57BL/6 WT mouse brains at 3 months (n = 4), 6 months (n = 4) and 21 
months (n = 4) were collected in this study. Two AD models at 3 months 
old from the same C57BL/6 background were added, including an 
early-onset model (5xFAD, JAX stock #034840) that overexpresses 
mutant human amyloid-beta precursor protein with the Swedish 
(K670N, M671L), Florida (I716V) and London (V717I) familial AD (FAD) 
mutations and human presenilin 1 harboring two FAD mutations, M146L 
and L286V. Brain-specific overexpression is achieved by neural-specific 
elements of the mouse Thy1 promoter16. The second, late-onset AD 
model (APOE*4/Trem2*R47H, JAX stock #028709) in this study carries 
two of the highest risk factor mutations of LOAD81, including a human-
ized APOE knock-in allele, where exons 2 and 3 and most of exon 4 of the 
mouse gene were replaced by the human ortholog including exons 2, 3, 
4 and some part of the 3’ UTR. Furthermore, a knock-in missense point 
mutation in the mouse Trem2 gene was also introduced, consisting of 
an R47H mutation, along with two other silent mutations. Two male 
and two female mice are included in each condition. Mice were housed 
socially. All animal procedures were in accordance with institutional, 
state, and government regulations and approved under institutional 
animal care and use committee protocols 21049 and 20047.

EasySci-RNA library preparation
Detailed step-by-step EasySci-RNA protocol is included as Supple-
mentary Protocol 1.

Human brain sample
Twenty-four post-mortem human brain samples across two regions 
(hippocampus and SMTG) and twelve individuals, including six con-
trols and six patients with AD, ranging from 70 to 94 years of age, were 
collected from the University of Kentucky AD Center Tissue Bank. 
Each included participant who donated samples for this study signed 
a relevant consent form (including consent for unrestricted sharing of 
clinical, pathological and genetic information for dementia research) 
that was approved by the UK Internal Review Board (UK IRB #44009).

Computational procedures for processing EasySci-RNA 
libraries
A custom computational pipeline was developed to process the raw 
fastq files from the EasySci libraries. Similar to our previous stud-
ies10,11, the barcodes of each read pair were extracted. Both adaptor 
and barcode sequences were trimmed from the reads. Second, an 
extra trimming step is implemented using Trim Galore85 with default 
settings to remove the poly(A) sequences and the low-quality base calls 
from the cDNA. Afterward, the paired-end sequences were aligned 
to the genome with the STAR aligner86, and the PCR duplicates were 
removed. Finally, the reads are split into SAM files per cell, and the gene 
expression is counted using a custom script. The reads from the same 
cell originating from the short dT and the random hexamer RT primers 
were counted as independent cells. During the gene counting step, we 
assigned reads to genes if the aligned coordinates overlapped with 
the gene locations on the genome. If a read was ambiguous between 
genes and derived from the short dT RT primer, we assigned the read 
to the gene with the closest 3’ end; otherwise, the reads were labeled 
as ambiguous and not counted. If no gene was found during this step, 
we then searched for candidate genes 1,000 bp upstream of the read 
or genes on the opposite strand. Reads without any overlapped genes 
were discarded. Similar strategy was used for generating an exon count 
matrix across cells.

To compare the performance of EasySci-RNA with the commercial 
10x Chromium system, we subsampled ~3,800 raw reads/cell from 
one randomly selected PCR batch of our large-scale mouse brain 
experiment, a 10x v2 Chromium dataset83, a 10x v3 dataset (https://
www.10xgenomics.com/resources/datasets/5k-adult-mouse-brain-n

uclei-isolated-with-chromium-nuclei-isolation-kit-3-1-standard) and a 
SPLiT-seq dataset33. After the subsampling, the EasySci data were pro-
cessed with the custom computational pipeline, whereas the 10x Chro-
mium data were processed with 10x Genomics’ Cell Ranger software87. 
We removed low-quality cells (unassigned reads >30%, UMIs >20,000 
and genes <200) and selected the top 1,000 highest-quality cells from 
the 10x Chromium dataset83 and a deeply sequenced EasySci-RNA 
library profiling adult mouse brains. Subsequently, we subsampled 
these cells to different sequencing depths and quantified the unique 
transcripts/genes detected per cells. Based on this comparison, we 
recommend a sequencing depth of no less than 5,000 raw reads per 
nucleus to ensure adequate coverage and detection of a substantial 
number of unique molecules.

Cell clustering and annotation analysis
After gene counting, we kept the cells with reads identified by both RT 
primers. We then merged the reads from the same cells. Low-quality 
cells were removed based on one of the following criteria: (i) the per-
centage of unassigned reads > 30%, (ii) the number of UMIs >20,000 
and (iii) the detected number of genes <200. We then used the Scrub-
let88 to identify and remove potential doublets. To identify distinct 
clusters of cells, we subjected the 1,469,111 single-cell gene expression 
profiles to UMAP visualization and Louvain clustering, similar to our 
previous study10. We then co-embedded our data with the published 
datasets2,89,90 through Seurat91, and clusters were annotated based on 
overlapped cell types. The annotations were manually verified and 
refined based on marker genes. DE genes across cell types were identi-
fied with the differentialGeneTest() function of Monocle 2 (ref. 92). To 
identify cell-type-specific gene markers, we selected genes that were 
DE across different cell types (FDR of 5%, likelihood), with over twofold 
expression difference between first and second-ranked cell types and 
TPM >50 in the first-ranked cell types.

Cell subclustering analysis
We selected each main cell type and applied PCA (combined matrix 
including the 30 principal components derived from the gene-level 
expression matrix and the first 10 principal components derived from 
the exon-level expression matrix), UMAP and Louvain clustering simi-
larly to the major cluster analysis. We then merged subclusters that 
were not readily distinguishable in the UMAP space similar as described 
before10. DE genes and exons across cell types were identified with 
the differentialGeneTest() function of Monocle 2 (ref. 92). To identify 
subcluster-specific DE genes associated with aging or AD models, we 
sampled a maximum of 5,000 cells per condition for downstream DE 
gene analysis using the differentialGeneTest function of the Monocle 
2 (ref. 92). The sex of the animals was included as a covariate to reduce 
sex-specific batch effects.

To detect cellular fraction changes at the subtype level across 
various conditions, we first generated a cell count matrix by comput-
ing the number of cells from every subcluster in each RT well profiled 
by EasySci-RNA. Each RT well was regarded as a replicate comprising 
cells from a specific mouse individual. Of note, we repeated the same 
analysis using the number of cells from each subcluster in each mouse 
individual (instead of RT well) and the result is highly consistent. We 
then applied the likelihood ratio test to identify significantly changed 
subclusters between different conditions, with the differentialGe-
neTest() function of Monocle 292. Subclusters were removed if they 
had <20 cells in either the male or female samples. The fold change 
was calculated by normalizing the number of cells in a cluster by the 
total number of cells in the corresponding condition, then dividing 
the normalized values in the case and control conditions after adding 
a small number (10−5) to reduce the effect of the very small clusters. 
In addition, we considered subclusters to change significantly only 
if there was over twofold change between conditions and the q-value 
was less than 0.05.
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Integration analysis with external datasets and to locate the 
spatial distributions of main cell types and subtypes
To annotate the spatial locations of main cell types, we integrated 
the EasySci-RNA data with publicly available 10x Visium spa-
tial transcriptomics datasets (https://www.10xgenomics.com/
resources/datasets/mouse-brain-section-coronal-1-standard-1-0-0,  
https://www.10xgenomics.com/resources/datasets/mouse-brain- 
serial-section-1-sagittal-anterior-1-standard-1-0-0; https://www. 
10xgenomics.com/resources/datasets/mouse-brain-serial-section
-1-sagittal-posterior-1-standard-1-0-0) through a NNLS approach: we 
first aggregated cell-type-specific UMI counts, normalized by the 
library size, multiplied by 100,000 and log-transformed after adding a 
pseudocount. A similar procedure was applied to calculate the normal-
ized gene expression in each spatial spot captured in the 10x Visium 
dataset. We then applied NNLS regression to predict the gene expres-
sion of each spatial spot in 10x Visium data using the gene expression of 
all cell types recovered in Easy-RNA data, similar to our previous study10. 
The same approach10 was applied to integrate our EasySci-RNA data-
set with a large single-cell dataset featuring highly detailed cell type 
annotations2 for identification of shared cellular states in two datasets.

To spatially map EasySci cell subtypes, we first aggregated ~50 
single-cell transcriptomes identified by k-means clustering of cells 
in the UMAP space of subclustering analysis. We then integrated the 
EasySci-RNA data with the above 10x Visium spatial transcriptomics 
datasets and a published spatial dataset28, using cell2location27 fol-
lowing the default settings. To establish the corresponding regions of 
EasySci subclusters, we utilized the regional annotation of the spatial 
pixels and manually reviewed the anatomical regions of the top 10 
pixels with the highest mapping score. To remove low-quality spatial 
mappings, only mapping scores above 1 were considered.

GM analysis
We performed GM analysis to identify the molecular programs under-
lying different cell types in the brain. First, we aggregated the gene 
expression across all subclusters. The aggregated gene count matrix 
was then normalized by the library size and then log-transformed. 
Genes were removed if they exhibited low expression (less than 1 
in all subclusters) or low variance of expression (that is, the gene 
expression fold change between the maximum expressed subcluster 
and the median expression across subclusters is less than 5). The 
filtered matrix was used as input for UMAP visualization19 (metric = 
‘cosine’, min_dist = 0.01, n_neighbors = 30). We then clustered genes 
based on their 2D UMAP coordinates through densityClust package  
(rho = 1, delta = 1)93.

EasySci-ATAC library preparation and sequencing
The detailed protocol for EasySci-ATAC library preparation is included 
in Supplementary Protocol 2.

Data processing for EasySci-ATAC
After sequencing, base calls were converted to fastq format and demul-
tiplexed using Illumina’s bcl2fastq/v2.19.0.316 tolerating one mis-
matched base in barcodes (edit distance <2). Downstream sequence 
processing was similar to sci-ATAC-seq94. To compare the performance 
of EasySci-ATAC with other methods, we extracted reads containing 
barcodes from cells passing quality control (3,636 cells from one PCR 
well of the EasySci-ATAC library, 8067 nuclei from the 10x-ATACv2 
library and 5,494 nuclei from the sci-ATAC-seq library15). We normal-
ized for sequencing depth differences by subsampling reads from the 
10X-ATACv2 and sci-ATAC-seq library, resulting on average 6,360 raw 
reads per cell across all three libraries. We processed the data through 
the same computation pipeline described above. Peak calling was per-
formed on each dataset separately with these parameters:–nomodel–
extsize 200–shift -100 -q 0.05. For peak counting, a union peak set 
was generated by merging the peaks called from three datasets. Cells 

were determined to be accessible at a given peak if a read from a cell 
overlapped with the peak. The peak-count matrix was generated by a 
custom python script with the HTseq package95.

Cell filtering, clustering and annotation for EasySci-ATAC
We used SnapATAC2/v1.99.99.396,97 to preprocess the EasySci-ATAC 
dataset. Cells with <1500 fragments and <2 TSS Enrichment were dis-
carded. Potential doublet cells and doublet-derived subclusters were 
detected using an iterative clustering strategy10 modified to suit for 
scATAC-seq data. We then used a deep-learning-based framework 
scJoint21 to annotate main ATAC-seq cell types by using the EasySci-RNA 
dataset as a reference. First, we subsampled 5,000 cells from each main 
cell type of the EasySci-RNA dataset, and selected genes detected in 
more than 10 cells. Then, the gene count matrix and cell type labels of 
EasySci-RNA, along with the gene activity matrix of EasySci-ATAC were 
input into the scJoint pipeline with default parameters. Jointed embed-
ding layers calculated from scJoint were used for UMAP visualizations 
using python package umap/v0.5.3 (ref. 19). Louvain clusters were iden-
tified using the Seurat function FindNeighbors() and FindClusters() 
based on the UMAP coordinates. Cells were assigned to the prediction 
label with the highest abundance within each louvain cluster. Clusters 
with low purities (that is, <80% cells were from the highest abundant 
cell type) were removed. Finally, to validate the integration-based 
annotations, we selected DE genes identified from the RNA-seq data 
with the following criteria: fold change between the maximum and the 
second maximum expressed cell type >1.5, q-value < 0.05, TPM >20 in 
the maximum RNA group and reads per million >50 in the maximum 
ATAC group. The top 10 DE genes ranked by fold change were selected 
using RNA-seq data for each cell type. If there were less than 10 genes 
passing the cutoff, we selected the top genes ranked by the fold change 
between the maximum expressed cell type and the mean expression 
of other cell types. We then calculated the aggregated gene count and 
gene body accessibility for each cell type. Subcluster level integrations 
were similar to the main cluster level integrations.

Differential accessible peak analysis
Nonduplicate ATAC-seq reads of cells from each main cell type were 
aggregated and peaks were called on each group separately with 
these parameters:–nomodel–extsize 200–shift -100 -q 0.05 using 
MACS2/v2.1.1 (ref. 98). To correct for differences in read depth or 
the number of nuclei per cell type, we converted MACS2 peak scores 
(−log10(q-value)) to ‘score per million’99 and filtered peaks by choos-
ing a score-per-million cutoff of 1.3. Peak summits were extended by 
250 bp on either side and then merged with bedtools/v2.30.0. Cells 
were determined to be accessible at a given peak if a read from a cell 
overlapped with the peak. The peak-count matrix was generated by a 
custom python script with the HTseq package95.

We used R package Signac/v1.7.0 (ref. 100) to perform the dimen-
sion reduction analysis using the peak-count matrix. We subsampled 
5,000 cells from each main cell type and performed TF-IDF normali-
zation using RunTFIDF(), followed by singular value decomposition 
using RunSVD() and retained the 2nd to 30th dimensions for UMAP 
visualizations using RunUMAP(). Differentially accessible peaks across 
cell types were identified using monocle 2 (ref. 92) with the differen-
tialGeneTest() function. 5,000 cells were subsampled from each cell 
type for this analysis. Peaks detected in less than 50 cells were filtered 
out. We selected peaks that were differentially accessible across cell 
types by the following criteria: 5% FDR (likelihood ratio test), and with 
TPM >20 in the target cell type.

Transcription factor motif analysis
We used ChromVar/v1.16.0 (ref. 101) to asess the TF motif accessibility 
using cisBP motif sets curated by chromVARmotifs/v0.2.0 (ref. 101,102). 
We subsampled 5,000 cells from each main cell type, and calculated 
the motif deviation score for each single cell using the Signac wrapper 
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RunChromVAR(). The motif deviation scores of each single cell were 
rescaled to (0, 10) using R function rescale() and then aggregated for 
each cell type. In addition, we also aggregated the gene expression of 
each TF in each cell type. We then computed the Pearson correlations 
between the aggregated motif matrix and aggregated TF expression 
matrix after scaling across all main cell types. TF analysis at the sub-
cluster level was performed similarly with modifications. For each cell 
type of interest, we selected peaks detected in more than 20 cells and 
only kept cells with more than 500 reads in peaks. Peaks were resized 
to 500 bp (±250 bp around the center) and motif occurrences were 
identified using matchMotifs() function from motifmatchr/v1.16.0  
(ref. 103). The motif deviation matrix was calculated using the Chrom-
Var function computeDeviations(). Then, the motif deviation scores 
were rescaled to (0, 10) and aggregated per subcluster. Pearson cor-
relation was calculated between the aggregated motif activity and 
aggregated TF expression across subclusters after scaling (subclusters 
with <20 cells were excluded).

LDSC analysis
The LDSC computational pipeline was modified from Cusanovich 
et al.15 and based on the LDSC software104 (https://github.com/bulik/
ldsc). Specifically, to integrate human and mouse data, we first used 
the UCSC utility liftOver105 to lift all GWAS SNPs to the mouse genome. 
We then took the set of differentially accessible peaks across main 
clusters and across microglia subclusters, and annotated each SNP 
according to whether or not it overlapped one of these peaks. We 
then followed the recommended workflow for running LDSC using 
HapMap SNPs106, precomputed files corresponding to 1000 genomes 
phase 3, excluding the MHC region to generate an LDSC model for 
each chromosome and peak set. Only main cell types or subclusters 
containing DEpeaks in every chromosome are included in the fol-
lowing analysis.

To calculate enrichments based on each model, we first regener-
ated the baseline model (version 1.1) provided from the LDSC website 
and used this as the reference for enrichment calculation. Results for 
all trait/cluster pairs were gathered into a single file. P values were 
calculated from z-scores assigned to coefficients reported by ldsc.py 
and coefficients were divided by the average per-SNP heritability for 
traits associated with a given test. Tests were corrected for multiple 
hypothesis testing using the Benjamini-Hochberg method and only 
tests with a q-value of 0.05 or lower were considered significant.

Cis-regulatory elements linkage analysis
We first constructed pseudo-cells by aggregating the RNA-seq and 
ATAC-seq profiles of the same subclusters. Aggregated count matrices 
were normalized to TPM and log-transformed after adding one pseu-
docount. We only retained genes and peaks with TPM value greater 
than 10 in the maximum expressed pseudo-cells. Then, for each gene, 
we calculated the Pearson correlation coefficient (PCC) between its 
gene expression and the chromatin accessibility of its nearby acces-
sible sites (±500 kb from the TSS) across aggregated subclusters. To 
define a threshold at PCC score, we also generated a set of background 
pairs by permuting the subcluster ID of the ATAC-seq matrix and with 
an empirically defined significance threshold of FDR < 0.01, to select 
significant positively correlated cis-reculatory element-gene pairs. 
We only keep the top linked gene with the highest PCC for each peak 
and distal peaks overlapping with the promoters for other genes 
were filtered out.

Spatial gene expression profiling of mouse brains
Spatial gene expression analysis experimental protocol was followed 
according to Visium Spatial Gene Expression User Guide (catalog no. 
CG000160), Visium Spatial Tissue Optimization User Guide (catalog 
no. CG000238 Rev A, 10x Genomics) and Visium Spatial Gene Expres-
sion User Guide (catalog no. CG000239 Rev A, 10x Genomics).

Transcriptomic aging clock analysis
A ridge regression model was employed to predict the ln(age) of 
pseudobulk cells (on average 15 cells merged) utilizing 80% of the 
pseudobulk cells from 3, 6, and 21-month-old mice. Predicted ages 
were subsequently calculated for the remaining 20% of WT mice and 
the entirety of the AD models. Individual models were crafted for  
each cell type.

Clustering, annotation and differential analysis for human 
brain samples
A digital gene expression matrix was constructed from the raw sequenc-
ing data as described before. To identify distinct clusters of cells cor-
responding to different cell types in the human brain samples, we 
co-embedded the human cells from both regions with our mouse 
brain dataset (up to 5,000 cells randomly sampled from each of 31 cell 
types), and clusters were annotated based on overlapped cell types. 
The annotations were manually verified and refined based on marker 
genes. Following on, the hippocampus and SMTG human dataset were 
integrated together to construct the same low-dimensional space with 
only human cells.

DE genes between AD and control samples for each cell type in 
each region were identified using Monocle 2 (ref. 107,108) with the 
differentialGeneTest() function. Main cell types with less than 50 
cells were excluded from the analysis (that is, choroid plexus epithe-
lial cells and vascular leptomeningeal cells in the SMTG). DE genes 
were filtered based on the following cutoffs: q-value < 0.05, with 
fold change (FC) > 1.5 between the maximum and second expressed 
condition, and with TPM >50 in the highest expressed condition. To 
further validate human-mouse shared gene expression changes, we 
used a recently published AD single-cell dataset from the human 
prefrontal cortex6.

Statistics and reproducibility
Statistical analyses are detailed in figure legends (Fig. 1 and Extended 
Data Fig. 9) and were performed using R software (version 4.0.1). The 
number of cells or pseudobulk cells used for the comparisons are 
detailed in the figure legends and the number of replicates are detailed 
in Methods. For spatial integration analysis in Fig. 1k,l, Fig. 3g,h, Fig. 4e 
and Extended Data Fig. 5h,i, each spatial transcriptomic datum includes 
one section of the experiment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All relevant data generated in this study are deposited to public reposi-
tories and are publicly released. Raw and processed data of single-cell 
RNA-seq/ATAC-seq profiling were deposited at the NCBI Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 
GSE212606).

Code availability
Customized computational scripts of processing EasySci data were 
deposited in Zenodo109 (https://doi.org/10.5281/zenodo.8395492) and 
GitHub (https://github.com/JunyueCaoLab/EasySci).
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Extended Data Fig. 1 | Representative examples showing the performance 
of optimized conditions of EasySci-RNA. a-b. Box plots showing the number 
of UMIs per nucleus lysed with 1% DEPC (n = 1,596 cells) vs. no DEPC (n = 3,036 
cells) in lysis buffer (a); or EZ lysis buffer (n = 50 cells) vs. sciRNA-seq3 nuclei 
lysis buffer (n = 96 cells)11 (b). c-d. Box plot showing the number of UMIs 
detected per nucleus across fixation conditions: 1% formaldehyde (n = 403 
cells) vs 4% paraformaldehyde (n = 358 cells) (c); 0.1% formaldehyde (n = 2,952 
cells) vs. 1% formaldehyde (n = 2,211 cells) (d). e-f. Slow freezing condition in 
10% DMSO (n = 328 cells) outperformed the flash freezing condition (n = 178 
cells) by increasing the number of nuclei recovered (e) and the number of UMIs 
per nucleus (f). g-h. Maxima reverse transcriptase (n = 5,197 cells) reduces 
the enzyme cost (g) without affecting the number of transcripts detected per 
nucleus compared to SuperScript™ IV reverse transcriptase (n = 4,071 cells) 
for profiling mouse brain cells (h). i. EasySci-RNA used T4 ligase (n = 40 wells) 
instead of quick ligase (n = 16 wells) for a higher recovery rate of nuclei. j. Box 

plot showing the number of unique transcripts detected per nucleus comparing 
chemically modified ligation primers (n = 499 cells) to unmodified adapters 
(n = 499 cells). k. Additional cDNA purification step after second strand synthesis 
(n = 90 cells) increased the number of unique transcripts per nucleus compared 
to without cDNA purification (n = 90 cells). l-m. Comparison of the number of 
unique transcripts and genes in EasySci-RNA (n = 11,501 cells) and sciRNA-seq3 
(n = 117 cells) with the same sequencing depth ( ~ 2,500 reads/cell) n. Line plots 
showing the median number (with standard error) of unique transcripts per 
nucleus from a deep sequenced small-scale EasySci-RNA, a 10X V2 library83, a 
10X V3 library and a SPLiT-seq library33, all profiling mouse brains (Methods). o. 
Comparison of the fraction of cell-associated unique transcripts from the total 
number of raw reads across different techniques at the same sequencing depth 
( ~ 3,800 raw reads/cell). Boxes in box plots indicate the median and interquartile 
range (IQR) with whiskers indicating 1.5X IQR.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Representative examples showing the performance 
of optimized conditions of EasySci-ATAC and quality comparison with other 
single-cell ATAC protocols. a-c. We compared two fixation conditions: nuclei 
were either fixed with 1% formaldehyde for 10 minutes at room temperature 
(n = 63 nuclei) or directly used for tagmentation without fixation (n = 361 nuclei). 
The unfixed condition outperformed the fixed condition by increasing cell 
recovery (a), the number of reads (b), and the ratio of reads in promoters (c) per 
nucleus. d. Pie chart showing the estimated enzyme cost compositions of library 
preparation for profiling 1 million single-cell chromatin accessibility profiles 
using EasySci-ATAC. e. Lineplot showing the ratio of reads loss during each 
data processing step comparing EasySci-ATAC, 10X-ATACv2 and sci-ATAC-seq 
(referred as ‘sciATAC2’ in the figure). f. Histogram showing the fragment length 

distributions across EasySci-ATAC, 10X-ATACv2 and sci-ATAC-seq. g. Box plot 
showing the number of unique fragments comparing EasySci-ATAC (n = 3,636 
cells), 10X-ATACv2 (n = 6,489 cells) and sci-ATAC-seq (n = 5,494 cells). h. Box plots 
showing the number of reads mapped to promoters (left, defined as ±1 kb around 
TSS) and peaks (right) comparing EasySci-ATAC (n = 3,636 cells), 10X-ATACv2 
(n = 6,489 cells) and sci-ATAC-seq (n = 5,494 cells). Peak calling was performed 
on each dataset separately and peaks were merged to a union peak set. i. 
Pieplot showing the number of peaks that can be repeatedly identified between 
EasySci-ATAC and sci-ATAC-seq (left) and between EasySci-ATAC and 10X-ATACv2 
(right). Boxes in box plots indicate the median and interquartile range (IQR) with 
whiskers indicating 1.5X IQR.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Performance of EasySci-RNA/ATAC profiling of mouse 
brain samples and identification of main brain cell types and cell-type-
specific markers by EasySci-RNA. a-b. Scatter plots showing the number of 
single-cell transcriptomes (a) and single-cell chromatin accessibility (b) profiled 
in each mouse individual across five conditions, colored by sex. c-d. Box plots 
showing the number of unique transcripts (c) and genes (d) detected per nucleus 
in each condition profiled by EasySci-RNA (3-month WT: n = 354,842 cells, 
6-month WT: n = 306,537 cells, 21-month WT: n = 257,017 cells, 3-month EOAD: 
n = 175,673 cells, 3-month LOAD: n = 375,042 cells). e-f. Box plots showing the 
ratio of reads in promoters (e) and the number of unique fragments (f) per cell in 

each condition profiled by EasySci-ATAC (3-month WT: n = 80,259 cells, 6-month 
WT: n = 77,101 cells, 21-month WT: n = 71,841 cells, 3-month EOAD: n = 71,548 cells, 
3-month LOAD: n = 75,560 cells). g. The recovered cell percentage from every 
main cell type is shown across different replicates. The samples are color-coded 
based on the condition of origin. h. UMAP plots showing the gene expression 
of identified novel markers for microglia (Arhgap45, Wdfy4), astrocytes (Clerr, 
Adamts9), and oligodendrocytes (Sec14l5, Galnt5). UMI counts for these genes 
are scaled by the library size, log-transformed, and then mapped to Z-scores. 
For all box plots, boxes indicate the median and interquartile range (IQR) with 
whiskers indicating 1.5X IQR.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Characterization of cell-type-specific chromatin 
accessibility and key TF regulators using EasySci-ATAC. a. UMAP plot of the 
EasySci-ATAC dataset subsampled to 5,000 cells per cell type (or all cells if the 
number of cells is less than 5,000), colored by main cell types in Fig. 1h. The 
analysis used the peak-count matrix without integration with the EasySci-RNA 
dataset. b. Bar plot showing the number of cell-type-specific peaks for each main 
cell type (defined as differential accessible (DA) peaks across main cell types 
with q-value < 0.05 and TPM > 20 in the target cell type). c. Heatmap showing the 
aggregated accessibility of top 100 DA peaks per cell type (ranked by fold change 

between the maximum and the second accessible cell type). Unique counts for 
cell-type-specific peaks are first aggregated, normalized by the library size, and 
then mapped to Z-scores. d. Scatter plots showing the correlation between gene 
expression and motif accessibility of cell-type-specific TF regulators, together 
with a linear regression line. TF gene expressions are calculated by aggregating 
scRNA-seq gene counts for each main cluster, normalized by the library size, and 
then mapped to Z-scores. TF motif accessibilities are quantified by chromVar101, 
then aggregated per main cell type and mapped to Z-scores (Methods).

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterizations of cellular subtypes in the mouse 
brain. a. Density plot showing the number of individuals per subcluster.  
The rug plot below the density plot represents the individual subclusters.  
b. Density plot of the number of marker exons per subcluster. The rug plot below 
the density plot represents the individual subclusters. c. UMAP plots, same 
as Fig. 2a based on both gene and exon-level expression, showing the specific 
expression of an example exon marker Map2-ENSMUSE00000443205.3 (top) of 
microglia subcluster 8 and the lack of specificity of its corresponding gene Map2 
(bottom). Single-cell gene/exon expression was normalized first by library size, 
log-transformed, and then scaled to Z-scores. d. UMAP visualizations showing 
subclustering analysis for choroid plexus epithelial cells colored by subcluster 

IDs, highlighting the rare subcluster shown in Fig. 2c. e. Dot plot showing 
the expression of selected marker genes for choroid plexus epithelial cells-7, 
including both normal genes (left five genes) and transcription factors (right 
five genes). f. UMAP visualizations showing subclustering analysis for vascular 
leptomeningeal cells colored by subcluster IDs, highlighting the rare subclusters 
shown in Fig. 2c. g. Dot plot showing the expression of selected marker genes for 
vascular leptomeningeal cells-2, including both normal genes (left five genes) 
and transcription factors (right five genes). h-i. Mouse brain sagittal sections 
showing spatial abundances of main cell types and related subclusters for 
cortical projection neurons 1 (h) and astrocytes (i) in anterior (top) and posterior 
(bottom) regions, estimated using the cell2location27.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Cis-regulatory elements regulation of gene expression 
at the subcluster level. a. Overview of analytical steps (left) and density plot 
showing the distribution of Pearson correlation coefficients between gene 
expression and the accessibility of distal linked site (colored in red) or all 
nearby accessible elements (within ±500 kb of the promoter, colored in gray) 
across pseudo-cells. Dash line indicates the Pearson correlation coefficient 
cutoff with 0.01 FDR. b. Left, histogram showing the number of accessible sites 
per gene. Right, histogram shows the distance distribution of accessible sites 
within 500 kb of genes. Both plots include all nearby accessible sites (colored in 

black) and the linked accessible sites (colored in red). c. Heatmaps showing the 
concordant expression of genes (left) and accessibility of putative distal linked 
sites (right) across all matched subclusters. Rows represent the aggregated 
gene expression or peak accessibility for a given subcluster. The raw aggregated 
RNA-seq and ATAC-seq data was normalized first by the total number of reads 
for each subcluster and then scaled to Z-score across all subtypes. d. Correlation 
plot showing examples of subcluster-specific genes and linked accessible sites 
for microglia-9 and unipolar brush cells-2. Gray area indicates 95% confidence 
intervals around the linear regression line.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Identification of key molecular programs underlying 
cell type specificity in the mouse brain. a. UMAP visualizations of genes 
colored by identified gene module IDs. b. Scatter plots showing examples of 
gene modules and their expression levels across subclusters (ordered by the 
level of gene module expression): GM-11 is specific to ependymal cells; GM-9 is 
specific to pituitary cell-6 (corticotropic cells); GM-6 marks four proliferating 
subclusters from different main cell types. UMI counts for genes from each gene 
module are scaled for library size, log-transformed, mapped to Z-scores and 
then aggregated. c. UMAP visualization showing three proliferating subclusters 

identified from OB neurons 1, oligodendrocyte progenitor cells, and microglia, 
colored by the normalized expression of canonical proliferating marker Mki67 
(top) and the aggregated expression of lncRNAs in GM-6 (bottom). UMI counts 
are first normalized by library size, log-transformed, and then mapped to 
Z-scores. OPCs, oligodendrocyte progenitor cells. d. Scatter plot showing the 
expression of each gene module across 359 subclusters. The associated cell 
types were annotated on the plot. UMI counts for genes from each gene module 
are scaled for library size, log-transformed, mapped to Z-scores and then 
aggregated.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Identifying aging-associated subclusters in EasySci-
ATAC and cell-type-specific enrichment of GWAS heritability of human 
phenotypes. a. UMAP visualization showing OB neurons 1-11 and OB neurons 
1-17 identified from EasySci-RNA (top) and EasySci-ATAC (bottom), colored by 
subcluster id (left), aggregated gene expression or gene activity of OB neurons 
1-11 gene markers (middle) and OB neurons 1-17 gene markers (right). b. UMAP 
visualization showing oligodendrocytes-6 and oligodendrocytes-7 identified 
from EasySci-RNA (top) and EasySci-ATAC (bottom), colored by subcluster id 
(left), aggregated gene expression or gene activity of oligodendrocytes-6 gene 
markers (middle) and oligodendrocytes-7 markers (right). c. UMAP visualization 
showing microglia-9 identified from EasySci-RNA (top) and EasySci-ATAC 
(bottom), colored by subcluster id (left), aggregated gene expression or gene 

activity of microglia-9 gene markers (right). Subcluster marker genes were 
identified by differential expression analysis using scRNA-seq data (Methods). 
d. Heatmap showing the gene expression (top) and the promoter accessibility 
(bottom) of microglia-9 enriched genes across subclusters. The EasySci-RNA data 
(UMI count matrix) and EasySci-ATAC data (read count matrix) were aggregated 
per subcluster, normalized by the total number of reads, column centered, and 
scaled. Of note, rare subclusters from RNA-seq data that were not detected in 
ATAC-seq data were not included in this analysis. e-f. Heatmap showing the 
results of LDSC analysis of the SNPs associated with the indicated phenotypes in 
DEpeaks across main cell types (e) or across microglia subtypes (f), colored by z 
score of regression coefficient. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001. Only 
cell types that contain DEpeaks from all autosomes are included in this analysis.
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Extended Data Fig. 9 | Identifying aging and AD pathogenesis-associated 
gene expression signatures. a-f. Volcano plots showing the differentially 
expressed (DE) genes between adult (6 months) and aged (21 months) mice 
(a-b), between WT and EOAD (c-d) and between WT and LOAD (e-f). Significantly 
changed genes are colored by the main cell type identity. Examples with 
concordant changes across subclusters are labeled with related biological 
pathways. g. Scatter plot shows the correlation of the log2-transformed fold 
changes of 559 DE genes significantly changed within the same subcluster in  
both AD models compared to WT. h. Box plot displays the predicted age of 
3-month-old WT mice (n = 4745 pseudobulk cells) against AD models (EOAD: 
n = 11959; LOAD: n = 25152) across various cell types, normalized by the mean 
predicted age of the WT samples. Stars indicate p-value < 0.05 (WT vs EOAD: 
p = 7.6 × 10-142; WT vs LOAD: p = 0) using the two-sided Wilcoxon rank-sum test.  
i. Box plots displaying the predicted biological age of 3-month-old wild-type mice 
against AD models, showing cell types and conditions demonstrating significant 

differences (FDR adjusted p-value < 0.05, two-sided Wilcoxon rank-sum test,). 
Values are normalized by the mean predicted age of the WT samples. Number of 
pseudobulk cells per box plot (left to right): 179, 615, 1190, 37, 85, 179, 1819, 3272, 
7875, 87, 220, 498, 493, 1701, 3057, 85, 359, 673, 62, 338, 65, 194, 424, 11, 30, 56, 605, 
1096, 2732, 427, 1389, 2403, 77, 261, 483, 49, 158, 298, 63, 276, 50, 302, 59, 216, 432, 
293, 880, 1837, 19, 3, 8, 35, 226, 118, 1178. j. Box plots showing Zfp423 expression 
in dentate gyrus neurons (3 months = 301, 6 months = 204, 21 months = 334, 
EOAD = 192 and LOAD = 338 pseudobulk cells) and Neat1 expression in astrocytes 
(3 months = 968, 6 months = 969, 21 months = 700, EOAD = 615 and LOAD = 1190 
pseudobulk cells) across various conditions. Both genes, ranking among the top 
predictors of age in their respective cell types, exhibited increased expression 
in the 3-month-old AD models (Zfp423 solely in the LOAD model, Neat1 in both 
AD models). For all box plots, boxes indicate the median and interquartile range 
(IQR) with whiskers indicating 1.5X IQR.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Quality control of the human brain dataset and 
conserved gene expression changes across mouse AD models and human 
AD samples from the prefrontal cortex. a. Scatter plot showing the number 
of single-cell transcriptomes profiled in each human sample in two regions, 
colored by sexes. b. Box plots showing the number of unique transcripts (left) 
and genes (right) detected per nucleus profiled in the human dataset (Control 
SMTG: n = 36,781 cells, Control HIP (hippocampus): n = 30,801 cells; AD SMTG: 
n = 17,864 cells, AD HIP: n = 32,794 cells). c. Dotplot showing the markers for 
the main cell types identified in the human dataset. d-e. UMAP plot showing 
the integration between human and mouse cells, colored by the dataset (d) and 
main cell types (e). AS, astrocytes; BG, Bergmann glia; CGN, cerebellum granule 
neurons; CIntN, cerebellum interneurons; CPEC, choroid plexus epithelial cells; 
CPN 1, cortical projection neurons 1; CPN 2, cortical projection neurons 2; CPN 3, 
cortical projection neurons 3; DGN, dentate gyrus neurons; EC, endothelial cells; 

EpC, ependymal cells; HN, habenula neurons; HBN 1, hindbrain neurons 1; HBN 
2, hindbrain neurons 2; IONN, Inferior olivary nucleus neurons; IMN 1, interbrain 
and midbrain neurons 1; IMN 2, interbrain and midbrain neurons 2; IntN1, 
interneurons 1; IntN2, interneurons 2; MG, microglia; OBN 1, OB neurons 1; OBN 2, 
OB neurons 2; OBN 3, OB neurons 3; OPC, oligodendrocyte progenitor cells; OLG, 
oligodendrocytes; PC, pituitary cells; PN, purkinje cells; SN 1, striatal neurons 1; 
SN 2, striatal neurons 2; UBC, unipolar brush cells; VLC, vascular leptomeningeal 
cells. f. Volcano plots showing AD-associated gene expression changes from 
human prefrontal cortex samples6 colored by main cell types. These genes 
show consistent changes in multiple cell subclusters between mouse AD 
models, human hippocampus and SMTG samples, and human prefrontal cortex 
samples from the above-mentioned publication. ASC, astrocytes; EX, excitatory 
neurons; INH, inhibitory neurons; MG, microglia; ODG, oligodendrocytes; OPC, 
oligodendrocyte progenitor cells; PER.END, pericyte/endothelial cells.
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