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Isoform-level transcriptome-wide 
association uncovers genetic risk 
mechanisms for neuropsychiatric disorders 
in the human brain

Arjun Bhattacharya1,2,3 , Daniel D. Vo    4,5, Connor Jops4,5, Minsoo Kim6,7, 
Cindy Wen6,7,8, Jonatan L. Hervoso8, Bogdan Pasaniuc    3,8,9,11 & 
Michael J. Gandal    4,5,6,7,10,11 

Methods integrating genetics with transcriptomic reference panels prioritize 
risk genes and mechanisms at only a fraction of trait-associated genetic 
loci, due in part to an overreliance on total gene expression as a molecular 
outcome measure. This challenge is particularly relevant for the brain, in 
which extensive splicing generates multiple distinct transcript-isoforms 
per gene. Due to complex correlation structures, isoform-level modeling 
from cis-window variants requires methodological innovation. Here we 
introduce isoTWAS, a multivariate, stepwise framework integrating genetics, 
isoform-level expression and phenotypic associations. Compared to 
gene-level methods, isoTWAS improves both isoform and gene expression 
prediction, yielding more testable genes, and increased power for discovery of 
trait associations within genome-wide association study loci across 1 5 n eu ro-
ps yc hi atric traits. We illustrate multiple isoTWAS associations undetectable at 
the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia 
and PCLO with multiple disorders. Results highlight the importance of 
incorporating isoform-level resolution within integrative approaches to 
increase discovery of trait associations, especially for brain-relevant traits.

Recently, the number of genetic associations with complex traits 
identified by genome-wide association studies (GWAS) has increased 
considerably1,2. However, translating these associations into concrete 
molecular mechanisms remains a great obstacle for the field. As GWAS 

hits predominantly localize within non-coding regions, often within 
large blocks of linkage disequilibrium (LD), a major challenge is pri-
oritizing the underlying causal variant(s) and identifying their puta-
tive functional impact on nearby target genes. Numerous methods, 

Received: 9 September 2022

Accepted: 5 October 2023

Published online: 30 November 2023

 Check for updates

1Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. 2Institute for Data Science in Oncology, University of 
Texas MD Anderson Cancer Center, Houston, TX, USA. 3Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University 
of California, Los Angeles, CA, USA. 4Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 5Lifespan 
Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 6Department of Psychiatry and Biobehavioral Sciences, 
Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. 7Department of Human Genetics, David Geffen School 
of Medicine, University of California, Los Angeles, CA, USA. 8Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA. 
9Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. 10Department of Genetics, 
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 11These authors contributed equally: Bogdan Pasaniuc, Michael J. Gandal. 

 e-mail: abhattacharya3@mdanderson.org; michael.gandal@pennmedicine.upenn.edu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01560-2
http://orcid.org/0000-0003-2057-969X
http://orcid.org/0000-0002-0227-2056
http://orcid.org/0000-0001-5800-5128
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01560-2&domain=pdf
mailto:abhattacharya3@mdanderson.org
mailto:michael.gandal@pennmedicine.upenn.edu


Nature Genetics | Volume 55 | December 2023 | 2117–2128 2118

Article https://doi.org/10.1038/s41588-023-01560-2

expression into trait mapping may prioritize discoveries in disease 
mapping missed by gene-level integration, as in a setting where a gene 
has multiple isoforms but only one is associated with the trait (Fig. 1a). 
By modeling the genetic architectures of isoforms of a gene simul-
taneously, isoTWAS provides a deeper understanding of potential 
transcriptomic mechanisms that underlie genetic associations.

The isoTWAS framework contains three steps (Fig. 1b). First, we 
build multivariate predictive models of isoform-level expression from 
all SNPs within 1 Mb in well-powered functional genomics training 
datasets (for example, GTEx35 and PsychENCODE20,22) using one of 
four multivariate penalized predictive frameworks39–42. As a baseline 
for comparison, we modeled each individual isoform independently 
with univariate regularized regressions4,41,43,44 (Methods). Model per-
formance was assessed via 5-fold cross-validation (CV).

Second, we use these models to impute isoform expression into 
an external GWAS cohort and quantify the association with the target 
GWAS phenotype. If individual-level genotypes are available, isoform 
expression can be directly imputed as a linear combination of the 
SNPs in the models, and these associations can be estimated through 
appropriate regression analyses. If only GWAS summary statistics are 
available, imputation and association testing is conducted simultane-
ously through a weighted burden test4.

Third, isoTWAS performs stepwise hypothesis-testing procedure 
to account for multiple comparisons and control for local LD structure. 
Isoform-level P values are first aggregated to the gene-level using the 
aggregated Cauchy association test (ACAT)45, where false discovery 
rates are controlled, and then individual isoforms of prioritized genes 
are subjected to post-hoc family-wise error control46 (Extended Data 
Fig. 1b and Methods). After this step, a set of isoforms are identified 
whose cis-genetic components of expression are associated with the 
trait of interest4. For these isoforms, we apply a rigorous permutation 
test by permuting the SNP-to-isoform effects to generate a null distri-
bution. This permutation test assesses how much signal is added by 
isoform expression, given the GWAS architecture of the locus, and con-
trols for large LD blocks4. Lastly, we can perform isoform-level Bayesian 
fine mapping at loci with significant trait associations to identify the 
minimal credible set of isoforms that contains the ‘causal’ isoform 
and to assign individual posterior inclusion probabilities (Methods). 
isoTWAS is available as an R package47.

Improved isoform and gene expression prediction
Previous work demonstrates that isoform-level quantifications from 
short-read RNA-seq, when propagated to the gene-level, can lead to 
more accurate gene expression estimates and differential expres-
sion inference37,38. We therefore hypothesized that our multivariate 
SNP-based imputation of isoform expression, when aggregated to 
the gene level, would outperform traditional gene-level (for exam-
ple, TWAS) models. To evaluate total gene expression predictions 
of TWAS and isoTWAS models across multiple genetic architec-
tures, we conducted simulations across 22 different gene loci using 
European-ancestry reference data48. At each gene locus, we controlled 
expression heritability and simulated 2–10 distinct isoforms, varying 
the proportion of causal isoform-level quantitative trait loci (isoQTLs; 
pcausal) and their sharing between isoforms (pshared) (Methods and Fig. 2a).

For isoTWAS, multivariate elastic net41 demonstrated the greatest 
CV prediction of isoform expression across most simulation settings 
(Fig. 2b, Extended Data Fig. 2a and Supplementary Data 1). For total 
gene expression prediction, the optimal isoTWAS models in sum out-
performed the optimal TWAS model, particularly at sparser isoQTL 
architectures, with median absolute increase in adjusted R2 of 0.6–3.5% 
(Fig. 2c, Extended Data Fig. 2b and Supplementary Data 2). Performance 
gains decreased with denser isoQTL architectures, although we expect 
approximately 0.1–1% quantitative trait locus (QTL) sparsity (that is, 
1–10 causal expression, or e-, and isoQTLs per gene or isoform)35. In 
simulations, isoTWAS prediction of gene expression also increases 

including transcriptome-wide association studies (TWAS), have been 
developed to integrate population-level transcriptomic reference pan-
els with GWAS summary statistics to prioritize genes at trait-associated 
loci3–15. TWASs impute the cis-component of gene expression predicted 
by common variants into an association cohort, thereby reducing  
multiple comparisons and increasing interpretability by identifying a 
set of genes that may underlie the genetic association3,4.

Previous integrative analyses have largely focused on total gene 
expression as the molecular outcome, and not the distinct tran-
script isoforms of a gene generated through alternative splicing, a 
tissue-specific gene regulatory mechanism present in ~90% of human 
genes that vastly expands the genome’s coding and regulatory poten-
tial16–19. Compared with other tissues, brain-expressed genes are longer, 
contain more exons, and exhibit the most complex splicing pattern, 
contributing to the evolutionary and phenotypic complexity of the 
human brain20–23. While Gencode v40 annotates 4.0±7.28 isoforms 
per gene (mean ± standard deviation), specific neuronal genes are 
individually known to have >1000 unique isoforms24,25. Independent 
of gene expression, splicing dysregulation has been implicated in dis-
ease20–22,26–28, especially for neuropsychiatric disorders10,20,22,29. Local 
splicing events can be difficult to measure and integrate across multiple 
large-scale datasets. Splicing is often coordinated across a gene, yield-
ing many non-independent features that increases multiple testing 
burden. In contrast, transcript-isoform abundance can be rapidly 
estimated across large-scale RNA-sequencing (RNA-seq) datasets using 
pseudoalignment methods30,31. Furthermore, in the brain, isoform-level 
expression changes have shown greater enrichment for schizophrenia 
(SCZ) heritability than gene or local splicing changes20,29,32–34. However, 
to fully integrate transcript-isoform quantifications with GWASs, inno-
vative computational methods are needed that jointly model the highly 
correlated isoforms of the same gene.

Here, we present isoform-level TWAS (isoTWAS), a flexible 
approach for complex trait mapping by integrating genetic effects on 
isoform-level expression with GWAS. Using simulations and data from 
the Genotype-Tissue Expression (GTEx) Project35 and the PsychENCODE 
Consortium20,22, we show that isoTWAS provides several advantages 
compared with gene-level methods. First, for transcriptomic predic-
tion, the correlation between isoforms provides additional information 
unavailable when only gene-level expression is modeled. This leads to 
improved prediction accuracy36 of >80% of individual isoforms, with 
a median of ~1.8- to 2.4-fold improvement, and of total gene expres-
sion by 25–70%. Consequently, this doubles the number of testable 
features in the trait mapping step. Third, divergent patterns of genetic 
effects across isoforms can be leveraged to provide a more granular 
hypothesis for a mechanism underlying the single-nucleotide poly-
morphism (SNP)–trait relationship. Finally, the isoTWAS framework 
jointly captures expression and splicing disease mechanisms while 
maintaining a well-controlled false discovery rate. Using GWAS data 
for 15 neuropsychiatric traits, isoTWAS greatly increases discovery of 
gene-level trait associations, uncovering associations at ~60% more 
GWAS loci compared to traditional gene-level TWAS. These results 
stress the need to shift focus to transcript isoforms to increase discov-
ery of transcriptomic mechanisms underlying genetic associations 
with complex traits.

Results
The isoTWAS framework
isoTWAS prioritizes genes with transcript isoforms whose cis-genetic 
component of expression is significantly associated with a complex 
trait. We first jointly model the expression of distinct isoforms of a 
gene as a matrix while accounting for their pairwise correlation struc-
ture3,4,24,35. Here, we assume that (1) local genetic variants directly modu-
late expression of an isoform and (2) the abundance of a gene is the 
sum of the abundance of its isoforms, computed as transcripts per 
million (TPM) (Extended Data Fig. 1a)30,31,37,38. Integrating isoform-level 
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as the proportion of shared non-zero effect SNPs across isoforms 
decreases (Fig. 2b,c, Extended Data Fig. 2b and Supplementary Data 2).

Next, we assessed predictive performance in GTEx data from 48 
tissues (13 brain) with sufficient sample sizes (N > 100) for all genes with 
multiple expressed isoforms (Supplementary Table 1 and Methods). 
Altogether, we built predictive models for 50,000 to 80,000 isoforms 
across 8,000 to 12,000 unique genes per tissue that met CV cutoffs 
(Methods, Extended Data Figs. 3–5 and Supplementary Table 2).

We considered three criteria to evaluate the prediction of both 
the multivariate and isoform-centric approaches of isoTWAS: (1) the 
number of isoforms imputed using multivariate/univariate models 
with CV R2 > 0.01, (2) the number of unique genes with >1 isoform 
imputed at CV R2 > 0.01 and (3) the number of unique genes with total 
gene expression imputed at CV R2 > 0.01 using isoTWAS (summed) or 
TWAS models. At the isoform level (criterion 1), through multivariate 
modeling, we trained 2.3- to 2.5-fold more models at CV R2 > 0.01 across 
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Fig. 1 | Isoform-centric approach for complex trait mapping and 
prioritization of disease mechanisms at a genetic locus. a, Motivation for 
isoTWAS. Gene G has three isoforms but only one has an effect on the trait. Gene 
G itself does not show an association with the trait. Studying genetic associations 
with an isoform-centric perspective will prioritize gene G, but not with a gene-
centric perspective. b, Schematic comparison of isoTWAS and TWAS. First, using 
functional genomics reference panels, isoTWAS trains a multivariate model to 
predict isoform expression from cis-window SNPs, compared to a univariate 

model of total gene expression in TWAS. Second, predictive models with CV 
R2 > 0.01 are then imputed into an association cohort to generate a nominal 
P value. Third, isoTWAS maps isoform–trait associations through a stepwise 
hypothesis-testing framework that provides gene-level false discovery rate 
(FDR) control and isoform-level family-wide error rate (FWER) control. Finally, 
locus-level permutation testing is performed to control for GWAS architecture 
and LD structure at the locus. An optional Bayesian fine-mapping step can be 
additionally applied at loci with multiple associations.
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the 48 tissues, compared to univariate approaches (Fig. 3a). isoTWAS 
improved prediction for 79–82% of isoforms with a median increase 
of ~1.8- to 2.4-fold increase in adjusted R2 (Extended Data Fig. 3a,b and 
Supplementary Table 2). Concordant with simulations, multivariate 
elastic net outperformed other methods, indicating that leveraging 
the shared genetic architecture between isoforms aids in marginal 
prediction of each isoform (Extended Data Fig. 3c and Supplementary 
Table 2). Additionally, multivariate models were particularly powerful 
in brain tissues compared to other tissues in GTEx, showing signifi-
cantly improved performance compared to univariate models (Fig. 3b; 
P = 0.011 from ordinary least squares regression of median percent 
increase in CV R2 across tissue, adjusted for sample size). This suggests 
more shared isoQTL architecture in brain tissues than others, which 
isoTWAS leverages for improved prediction. These gains in prediction 
accuracy translate into increased power in trait association49.

At the gene level (criteria 2 and 3), isoTWAS increased the number 
of genes with testable models in the trait mapping step and improved 
prediction of total gene expression. The number of unique genes with 
>1 isoTWAS model at CV R2 > 0.01 (inclusion criterion for isoTWAS 
trait mapping) was 1.9–2.5 times larger than the number of unique 
genes with TWAS models achieving CV R2 > 0.01 for gene expression 
prediction (Fig. 3c, Extended Data Fig. 4a and Supplementary Table 
2). For a given gene, isoTWAS models (summed) outperformed TWAS 
models in prediction of total gene expression by a median of 25–70% 
in CV (Extended Data Fig. 4b) with a 50–80% increase in the number 

of genes that are predicted at CV R2 > 0.01 (Fig. 3d and Extended Data 
Fig. 5). We replicated these gains in total gene expression prediction 
using an independent, out-of-sample QTL dataset of adult cortex from 
PsychENCODE/AMP-AD (Methods). Multivariate isoTWAS models 
outperformed univariate TWAS models in predicting total gene expres-
sion, with a 15.2% median percent increase in adjusted R2 when training 
in GTEx and testing in PsychENCODE/AMP-AD and 23.9% vice versa  
(Fig. 3e and Supplementary Table 3).

As genes differ in the number and expression patterns of their con-
stituent isoforms, gene length, SNP density, quantification accuracy, 
and other relevant factors, we characterized their impact on isoTWAS 
performance (Methods, Supplementary Note, Extended Data Fig. 6 
and Supplementary Data 3 and 4). We also evaluated the impact of 
reference transcriptome annotation fidelity by generating a synthetic 
dataset quantified using a reference annotation masking the dominant 
isoforms for a set of genes (Extended Data Fig. 3d). We discuss these 
evaluations in detail in Supplementary Note.

In total, as predictive performance is positively related to power to 
detect trait associations49, both the increased number and accuracy of 
trainable imputation models using isoTWAS have strong implications 
for increased discovery49.

Calibrated null and improved power across architectures
We next introduced GWAS data for complex traits into our simulation 
framework to benchmark the false positive rate (FPR) and power of 
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models in simulated data. a, Simulation setup to generate isoform expression 
with specified isoQTL architecture, controlled expression heritability, number 
of isoforms and inter-isoform correlation structure. b, Proportion of simulations 
where the isoTWAS model exhibited the maximal adjusted R2 for marginal 
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The multivariate elastic net was the best performing model across most simulated 
architectures. c, Boxplots show the difference in adjusted R2 in predicting total gene 
expression between isoTWAS and TWAS models from simulations with sample size 
500 where isoform and gene expression heritability are set to 0.05, across varying 
causal isoQTL proportions (x axis), number of transcripts per gene, proportion of 
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http://www.nature.com/naturegenetics


Nature Genetics | Volume 55 | December 2023 | 2117–2128 2121

Article https://doi.org/10.1038/s41588-023-01560-2

isoTWAS (Methods). First, the FPR is controlled at 0.05 for isoform-level 
mapping using ACAT (Extended Data Fig. 7a and Supplementary  
Data 5). For a simulated trait, we modeled causal effect architectures for 
a genomic locus with 2–10 isoforms under three scenarios (Methods, 
Fig. 4 and Extended Data Fig. 7b): (1) where the true trait effect is from 
only total gene expression, (2) where there is only one ‘effect isoform’ 
with a non-zero effect on the trait and (3) where there are two effect 
isoforms with varying magnitudes of association. Scenario 1 showed 
clear increases in power for TWAS over isoTWAS, but this advantage 
decreased with increased causal proportion of isoQTLs and proportion 
of shared isoQTLs (Fig. 4a and Supplementary Data 6). For scenarios 

2 and 3, as effects on the trait varied across isoforms of the same gene 
(Fig. 4b,c and Supplementary Data 7 and 8), isoTWAS showed clear 
increases in power over TWAS across most scenarios and causal effect 
architectures and particularly in settings with one effect isoform or 
two divergent effect isoforms. However, when the effect sizes of two 
effect isoforms converged, TWAS and isoTWAS demonstrated similar 
power (Fig. 4c).

Finally, we assessed the performance of probabilistic fine map-
ping in identifying the true effect isoform in our simulation framework 
of genes with 5 or 10 isoforms (Methods, Extended Data Fig. 7c and  
Supplementary Data 9). The sensitivity of 90% credible sets (proportion 
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of credible sets containing the true effect isoform) was undercali-
brated, likely due to difficulties in fine mapping when QTL horizontal 
pleiotropy is high50. With increasing proportions of shared isoQTLs, 
the sensitivity of 90% credible sets decreased and the mean set size 
increased. Our simulation results suggest that varied isoQTL archi-
tectures and isoform–trait effects for isoforms of the same gene are 
key features that influence power gains in isoform-centric modeling.

Improved trait mapping across 15 neuropsychiatric GWAS
To explore our central hypothesis that isoform-centric multivariate 
prediction improves discovery for complex trait mapping, particu-
larly for brain relevant traits, we next compared isoTWAS/TWAS trait 
mapping across 15 neuropsychiatric traits. To maximize discovery, 

we trained both isoTWAS and TWAS models using a large adult brain 
functional genomics reference panel (N = 2,115), composed of frontal 
cortex samples from PsychENCODE and AMP-AD Consortia20,51, and 
using a developmental22 prefrontal cortex (N = 205) dataset (Methods, 
Fig. 5 and Extended Data Fig. 8). In the adult cortex, we trained models 
for 15,127 genes using isoTWAS passing the CV R2 > 0.01 cutoff, com-
pared to 14,283 genes using gene-level TWAS. In the developing cortex, 
despite a smaller sample size, 16,504 and 10,535 models for genes were 
successfully trained using isoTWAS and TWAS, respectively (Methods 
and Supplementary Table 1).

We applied these models to perform trait mapping using sum-
mary statistics from 15 brain-related GWAS52–66 (Methods, Fig. 5a and 
Extended Data Fig. 8a) using the stepwise hypothesis-testing procedure 
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(false discovery rate-adjusted P < 0.05 and within-locus permutation 
PACAT < 0.05). We detected more trait-associated genes with isoTWAS 
compared with TWAS, across adult (2,595 versus 1,589 genes) and 
developmental (4,062 versus 890 genes) reference panels, respectively 
(Extended Data Fig. 8b and Supplementary Data 10–13). Across both 
reference panels and all 15 traits, isoTWAS detected 3,436 unique gene 
and 5,377 unique isoform–trait associations (Extended Data Fig. 8c). 
Of the 1,335 genes with multiple isoform–trait associations, 661 genes 
exhibited distinct isoform-level associations in different directions.

We next compared the performance of isoTWAS/TWAS in prior-
itizing candidate mechanisms within independent, high-confidence 
GWAS-significant loci67. Across a combined 1,149 GWAS loci, isoTWAS 
identified significant associations within 323, compared with 201 
detected by TWAS, a ~ 60% increase in discovery (Fig. 5b, Methods and 
Supplementary Table 4). Of the 287 GWAS loci identified for SCZ68, 
isoTWAS prioritized genes within 70 and 86 unique loci across adult 
and developmental cortex, respectively, compared with 56 and 29 loci 
for TWAS (Fig. 5b). Furthermore, 96% of gene-level TWAS associations 
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(193/201) were concordantly identified by isoTWAS. Likewise, the 
standardized effect sizes for significant gene- and isoform-level 
associations were highly correlated (r = 0.84, P < 2.2 x 10−16; Fig. 5c). 
Finally, to explore whether these isoTWAS-specific associations were 

capturing true disease signal, we compared the rate at which each 
method prioritized constrained genes (probability of loss-of-function 
intolerance, pLI ≥ 0.9; Supplementary Tables 5–8), which are known 
to be substantially enriched for disease associations69. Across adult 
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and developmental panels, respectively, isoTWAS prioritized 724 and 
385 constrained genes compared to 106 and 200 with TWAS (Fisher’s 
exact test, adult: P = 0.048, developmental: P = 1.23 × 10−5). Altogether, 
isoTWAS not only recovers the vast majority of TWAS associations but 
also increases discovery of candidate GWAS mechanisms, particularly 
for genes intolerant to protein-truncating variation70.

To investigate whether this increase in trait mapping discovery 
reflected true biological signal rather than test statistic inflation due 
to the increased number of tests (~4-fold increase in number of tests), 
we next compared the null distributions across methods for results 
(Extended Data Fig. 9). As the genomic inflation factor is not a reliable 
measure in TWAS settings71, we estimated inflation in gene-level test 
statistics using an empirical Bayes approach (Methods). There were 
no significant differences between TWAS and isoTWAS in the 95% 
credible intervals for test statistic inflation (Fig. 5d). Using a heuristic 
to estimate increases in effective sample size (Methods), we observed 
an approximate increase in effective sample size of 10–20% when using 
isoTWAS compared to TWAS (Fig. 5e and Supplementary Table 9). 
These analyses indicate that isoTWAS discovery is well-calibrated to 
the null and facilitates increased discovery in real data compared to 
gene-level TWAS.

We empirically compared probabilistic fine mapping50 of results 
from isoTWAS and gene-level TWAS (Methods and Extended Data 
Fig. 8d). Here, we conducted fine mapping in loci with one or more 
significant trait-associated genes/isoforms (adjusted P < 0.05 and 
permutation P < 0.05) within 1 Mb of one another, termed risk regions. 
Overall, the mean number of genes in a risk region using TWAS was 3.15 
compared to 3.90 using isoTWAS; the mean number of genes in a 90% 
credible set using TWAS was 1.33 compared to 1.25 using isoTWAS. 
On average, there were 1.54 isoforms per gene in a risk region and 1.27 
isoforms per gene in a 90% credible set. Isoform-centric modeling pre-
sents unique challenges for fine mapping due to potentially high levels 
of horizontal pleiotropy and remains an important and open question 
for the field. Nevertheless, isoTWAS identified a comparable number 
of genes in risk regions compared with TWAS, and the combination of 
two-step trait mapping, permutation testing, and probabilistic fine 
mapping maintained narrow credible set sizes.

Lastly, we compared discovery using isoTWAS to discovery using 
local splicing-event-based trait mapping. For the developmental brain 
dataset, we calculated intron usage using LeafCutter72 and transformed 
these usage percentages to M-values73. Then, for all introns mapped 
to a given gene, we used all SNPs within 1 Mb of a splicing event to pre-
dict its usage and mapped trait associations for these splicing events 
using isoTWAS’s multivariate framework (Methods). Overall, when 
aggregated to the gene-level, across 15 traits, we found that isoTWAS 
prioritized features at ~40% more independent GWAS loci (167 loci) 
than splicing-event-based trait mapping (119 loci), with 108 loci (90.7%) 
jointly identified (Fig. 5f), using the same developmental brain refer-
ence panel. Taken together, isoTWAS’s specific focus on modeling 
isoforms of a gene provided gains in trait association discovery over 
considering only total gene expression or intron usage.

isoTWAS identifies trait associations undetectable by TWAS
Overall, isoTWAS prioritized dozens of candidate risk genes and mecha-
nisms in the developing and adult brain for 15 neuropsychiatric traits. 
These isoTWAS-prioritized genes were enriched for relevant pathways 
consistent with the biology of the underlying trait: cell proliferation 
for brain volume (BV), calcium channel activity for SCZ and neuroti-
cism (NTSM), and proteasome regulation in Alzheimer’s disease (ALZ) 
(Extended Data Fig. 10a). In the Supplementary Note, we discuss several 
examples of trait associations for which isoTWAS prioritized a highly 
constrained gene within a GWAS locus (Supplementary Tables 5–8)74–79.

A main advantage of isoTWAS over TWAS is the identification 
of trait associations for isoforms of genes, where the gene itself is 
not associated with the trait. We illustrate several examples of 

isoTWAS-prioritized isoforms, all in the adult cortex, for genes with 
limited or distinct expression QTLs (Fig. 6, Extended Data Fig. 10b 
and Supplementary Data 14), with exon/intron structure shown in 
Supplementary Figs 1–4. First, we detected a SCZ association with 
ENST00000492957, an isoform of AKT3 (1q43-144, pLI = 1), which 
encodes a serine/threonine-protein kinase that regulates cell life cycle 
(e.g., growth, proliferation and survival). AKT3 has shown effects on 
anxiety, spatial-contextual memory, and fear extinction in mice, and 
loss-of-function of AKT3 causes learning and memory deficits80,81. 
Within the GWAS locus, there was a strong overlapping isoQTL sig-
nal (P < 10−50) but only one eQTL with P < 10−6, which is in low LD with 
the GWAS-significant SNPs (Fig. 6a). The lead isoQTL (rs4430311) 
showed a significant, negative association with ENST00000492957, 
but a nominally significant positive association with AKT3 expression. 
Interestingly, a different isoform of AKT3 (ENST00000681794) was 
prioritized in an association with BV, which also has a GWAS associa-
tion at this locus (Extended Data Fig. 10b). The two distinct isoforms 
of AKT3 have distinct 3’ transcript structures, close to the lead isoQTL 
of ENST00000681794. These results suggest a complex role of AKT3 
isoforms with brain-related traits to be explored further.

Similarly, we found a strong isoQTL signal for ENST00000409096 
but a weak eQTL signal of its gene CUL3 in the 2q36.2 locus (pLI = 0.99), 
in another association with SCZ (Fig. 6b). CUL3 is involved in cell cycle 
regulation, protein trafficking and signal transduction, and its dys-
regulation is a potential mechanism for both SCZ and autism spectrum 
disorder (ASD) risk82. Next, isoform ENST00000678969 of HSPD1, 
encoding a mitochondrial heat shock protein, was associated with 
SCZ risk (pLI = 0.99, 2q33.1) and showed a similar pattern across GWAS, 
eQTL and isoQTL signals (Fig. 6c). HSPD1 is among multiple non-MHC 
immune genes implicated in SCZ and has roles in brain hypomyelina-
tion83. Lastly, ENST00000423517, an isoform of PCLO, was associated 
with multiple traits in the cross-disorder (CDG) GWAS (meta-analysis 
of attention deficit hyperactivity disorder, bipolar disorder, major 
depression and SCZ, pLI = 1, 7q21.11). Again, we found a strong isoQTL 
but not eQTL signal, with the CDG risk allele negatively associated with 
isoform expression. PCLO is involved in the presynaptic cytoskeletal 
matrix, establishing active synaptic zones, and synaptic vesicle traf-
ficking; rare variants of PCLO in diverse populations have been recently 
implicated in risk of SCZ and ASD84,85. Altogether, these results highlight 
the importance of incorporating isoform-level regulation for prioritiz-
ing novel candidate GWAS risk mechanisms, as implemented in our 
isoTWAS framework.

Discussion
We present isoTWAS, a framework that integrates genetic and 
isoform-level transcriptomic variation with GWAS to identify gene 
expression-trait associations and prioritize a set of isoforms of the 
gene that best explains the association. We provide an extensive set of 
isoform-level predictive models86–88 and software to train models and 
conduct isoform-level trait mapping with GWAS summary statistics47.

isoTWAS presents several advantages over gene-level TWAS or 
univariate modeling of isoform expression. First, modeling expression 
at the isoform-level can detect isoQTL architectures that vary across 
isoforms and are not captured by gene-level eQTLs. Second, joint 
multivariate isoform-level modeling improved predictive accuracy of 
isoform and total gene expression. Third, aggregating isoform-level 
associations to the gene-level substantially increased power to detect 
trait associations. We attribute this increase in power to three fea-
tures: (1) isoform-level modeling in isoTWAS increases the number of 
imputable genes by >2-fold, (2) isoTWAS models improve gene-level 
prediction up to 35% and (3) isoTWAS jointly models expression and 
splicing regulation, capturing underlying complex trait mechanisms. 
Finally, as genetic control of isoform expression is often more tissue- 
and cell-type-specific than eQTLs26,35, we hypothesize that isoTWAS is 
more capable of uncovering context-specific trait associations.
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Recent work has highlighted alternative splicing as a promis-
ing mechanism underlying complex traits not captured through 
eQTLs20,22,26,89, as mapping genetic regulation at the exon- rather than 
gene-level often leads to more detected signal90. However, most of 
these analyses focused on local splicing events or exon-level inclu-
sion, rather than different isoforms of the same gene, which reflect the 
combined consequences of these splicing events. Local splicing events 
can be difficult to systematically measure and integrate across multiple 
large-scale datasets, which is necessary for achieving sufficient sample 
sizes to interrogate population-level allelic effects20,21. Our results dem-
onstrate that isoform-centric trait mapping with isoTWAS increases 
discovery by ~40% compared with a matched local splicing-event-based 
analysis, although these methods may recover some independent sig-
nal. Future work should integrate reference-guided and annotation-free 
approaches for isoform and local splicing quantification to develop 
nuanced mechanistic hypotheses for GWAS loci.

We conclude with limitations of and future considerations 
for isoTWAS. First, isoform-level expression quantifications are 
maximum-likelihood estimates, due to limitations of short-read 
RNA-seq. These estimates are guided by existing transcriptome anno-
tations and thus are dependent on their completeness and accuracy. 
Further, dataset-specific sequencing factors will affect the accuracy 
of these estimates, especially sequencing depth, read length, and 
library preparation. The emergence of long-read sequencing plat-
forms will be instrumental for improving tissue-specific reference 
transcriptome annotations, which, in turn, will improve isoTWAS. As 
these methods continue to gain scalability and cost-effectiveness, they 
will ultimately replace short-read sequencing and isoform estimation 
for population-scale datasets. isoTWAS is agnostic to the method of 
isoform expression quantification and will continue to be applicable 
as we approach the long-read sequencing era.

Second, although inferential replicates from RNA-seq quanti-
fication can provide measures of technical variation, they are not 
incorporated into the predictive models. Our analyses of prediction 
across inferential replicates suggest a methodological opportunity: 
leveraging these inferential replicates as a measure of quantification 
error to estimate the robustness of isoform prediction and the preci-
sion of SNP effects. A predictive model that estimates standard errors 
for SNP effects by model averaging across replicates may improve trait 
mapping by providing a prediction interval for imputed expression. 
Third, as isoform-level trait mapping is akin to differential transcript 
expression analysis, isoTWAS can be extended to analyses of geneti-
cally regulated transcript usage. However, it is unclear if the composi-
tional nature of transcript usage data needs to accounted for during 
prediction or trait mapping91. Lastly, isoTWAS can suffer from reduced 
power, inflated false positives and reduced fine-mapping sensitivity in 
the presence of SNP horizontal pleiotropy92,93. For pathways that are 
not observed or accounted for in the reference expression panel and 
GWAS, accounting for horizontal pleiotropy may improve trait map-
ping. We motivate extensions of probabilistic fine mapping to reconcile 
pleiotropy for SNPs shared across models for multiple isoforms at the 
same genetic locus, as summary-statistic-based methods that control 
for horizontal pleiotropy are not yet effective94.

isoTWAS provides a flexible framework to interrogate the 
transcriptomic mechanisms underlying genetic associations with 
complex traits and generate biologically meaningful and test-
able hypotheses about disease risk mechanisms. We emphasize 
a shift in focus from quantifications of the transcriptome on the 
gene-level to the transcript-isoform level to maximize discovery of 
transcriptome-centric genetic associations with complex traits.
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Methods
Ethical approval
We use public data with previous ethical approval20,22,35,51–66, and our 
study did not need any specific approval.

Overview of isoTWAS
isoTWAS consists of three steps: (1) training predictive models of 
isoform expression, (2) imputing isoform-specific expression into a 
separate GWAS panel and (3) association testing between imputed 
expression and a phenotype (Fig. 1b). isoTWAS contrasts with TWAS 
as it models correlations between the expression of isoforms of the 
same gene. Further mathematical details are provided in Supplemental 
Methods.

Training predictive models of isoform expression
Model and assumptions. Assume a gene G has M isoforms with expres-
sion levels across N samples, with each sample having R inferential 
replicates. Let Y∗G  be the N × M matrix of mean isoform expression 
(log-scale TPM) for the N samples and M  isoforms, using the 
expectation-maximization point estimates from a pseudo-mapping 
quantification algorithm, like Salmon or kallisto30,31. We can jointly 
model isoform expression with a system of N × M × R equations. For 
sample n ∈ {1,… ,N} , isoform m ∈ {1,… ,M}  of gene G, and replicate 
r ∈ {1,… ,R}, we have:

ynmr = xnβm + ϵnmr, (1)

where ynmr is the expression of isoform m for the rth inferential  
replicate of sample n, xn is the P-vector (vector of length P) of 
cis-genotypes in a 1 Mb window around gene G, βm is the P-vector of 
genetic effects of the P genotypes on isoform expression, and ϵnmr  is 
normally distributed random noise with mean 0 and variance σ2nmr. We 
standardize both the genotypes and the isoform expression to mean 
0 and variance 1. As the SNP vector xn does not differ across replicates, 
we assume that ϵnmr are independent and identically distributed across 
samples n ∈ {1,… ,N}  and identically distributed across replicates 
r ∈ {1,… ,R} . Accordingly, the point estimates of the SNP effects on 
isoform expression are not influenced by differences in expression 
across replications. Therefore, in matrix form, we consider the follow-
ing predictive model:

Y∗G = XGBG + EG. (2)

Here, XG is the N × P matrix of genotype dosages, BG is the P × M 
matrix of SNP effects on isoform expression and EG is a matrix of random 
errors, such that vec (EG) ∼ NNM(0,Σ = Ω−1 ⊗ IN) . Σ represents the 
variance-covariance matrix in the errors (with precision matrix 
Ω = Σ−1), following the above independence assumptions.

Estimating SNP effects on isoform expression. We apply five meth-
ods to estimate ̂BG, the matrix of SNP effects on isoform expression. 
The first four are multivariate methods that model the isoforms jointly; 
the last method models each isoform separately using univariate 
methods. The goal of this SNP effect estimation is marginal prediction, 
that is, leveraging the correlation between isoforms to improve predic-
tion of each isoform separately. The ̂BG matrix that gives the largest 
adjusted R2 in 5-fold CV across the five methods is selected as the  
final model to predict isoform expression for a given gene. When 
interested in predicting gene-level expression from these predicted 
isoforms, isoTWAS trains an elastic net penalized linear regression 
that predicts gene-level expression from genetically-predicted 
isoform-level expression; this model training is conducted across the 
same 5 folds to prevent data leakage95. We train 4 multivariate models 
and 1 univariate model to marginally predict isoform expression  
(Supplemental Methods):

 (1) Multivariate elastic net (MVEnet) regression: This is an exten-
sion of elastic net, where the response is a matrix of correlated 
responses41. The absolute penalty is imposed on each coef-
ficient by a group-lasso penalty on each vector of SNP effects 
across isoforms (rows of BG). Accordingly, a SNP can only have 
a non-zero effect on an isoform if it has a non-zero effect on all 
isoforms.

 (2) Multivariate LASSO regression with covariance estimation 
(MRCE): We adapt Rothman et al’s proposed procedure to 
simultaneously and iteratively estimate both ̂BG, the SNP effects 
matrix, and ̂Ω, the precision matrix40. This procedure accounts 
for the correlation between isoforms but does not impose the 
group-lasso penalty as in MVEnet.

 (3) Multivariate elastic net with stacked generalization ( joinet): 
We use Rauschenberger and Glaab’s joinet method that uses a 
two-step prediction42: first, the design matrix of SNPs is used 
to generate a cross-validated prediction of each isoform, and 
second, the matrix of predicted isoform expression is used to 
predict each isoform.

 (4) Sparse partial least squares (SPLS): This is an implementation 
of partial least squares with a sparsity penalty, that attempts 
to find an optimal latent decomposition for the linear relation-
ship between the matrix of isoform expression and the design 
matrix of SNPs. We use the Chun and Keles’s implementation 
from the spls R package39.

 (5) Univariate FUSION: We disregard the correlation structure 
between isoforms and train a univariate elastic net41, estima-
tion of the best linear unbiased predictor (BLUP) in a linear 
mixed model44, and SuSiE43 predictive model for each isoform 
separately. The model with the largest adjusted R2 out of these 
three models is outputted. This approach serves as a baseline 
measurement for prediction of each isoform independently.

Trait association and stepwise hypothesis testing
The tests of association in isoTWAS are like tests in differential tran-
script expression analyses, as TWAS tests of association are analo-
gous to tests in differential gene expression analyses. isoTWAS and  
TWAS are distinct, as these methods consider imputed isoform and 
gene expression, respectively, as predicted by the trained expres-
sion models. If individual-level genotypes are available in the exter-
nal GWAS panel, isoform expression can be directly imputed by 
multiplying the SNP weights from the predictive model with the 
genotype dosages in the GWAS panel. If only summary statistics are 
available, we adopt the weighted burden test from Gusev et al. with 
an ancestry-matched LD panel4,93. Compared to TWAS, isoTWAS 
association testing involves an increased number of tests (~4 isoforms 
per gene)24 and potential correlation in test statistics for isoforms of 
the same gene.

We perform a two-step hypothesis-testing framework (Extended 
Data Fig. 1b)46. In the first step, for every isoform with a trained model, 
we generate a test statistic using either linear regression for GWAS 
with individual-level genotypes or the weighted burden test for GWAS 
with only summary statistics4. Given the t test statistics T1,… ,Tt  for 
isoforms for a gene, an omnibus test aggregates the t test statistics 
into a single P value for a gene. We benchmarked different omnibus 
tests in simulations, but the default omnibus test in isoTWAS is ACAT45. 
We control for false discover y across all genes via the 
Benjamini-Hochberg procedure, but the Bonferroni procedure can 
also be applied for more conservative false discovery control. In the 
second step, for isoforms for genes with an adjusted omnibus P < 0.05, 
we employ Shaffer’s modified sequentially rejective Bonferroni pro-
cedure to control the within-gene family-wide error rate. At the end 
of these two steps, we identify a set of genes and their isoforms that 
are associated with the trait.
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Control for false positives within GWAS loci
In TWAS and related methods, association statistics have been shown 
to be well-calibrated under the null of no GWAS association. However, 
within loci harboring significant GWAS signal, false positive associa-
tions can result when eQTLs and GWAS coincide within overlapping 
LD blocks. To address this, we adopt two conservative approaches 
to control for type 1 error within GWAS loci, namely (1) permutation 
testing and (2) probabilistic fine mapping. The permutation testing 
approach, adopted from Gusev et al4, is a highly conservative test of the 
signal added by the SNP-transcript effects from the predictive models, 
conditional on the GWAS architecture of the locus. Briefly, we permute 
the SNP-transcript effects in the predictive models 10,000 times and 
generate a null distribution for the isoform test statistic. We use this null 
distribution to generate a permutation-based P value for the original 
test statistic for each isoform. Finally, we can use isoform-level proba-
bilistic fine mapping using methods from FOCUS50 to generate credible 
set of isoforms that explain the trait association at a locus. We only run 
isoform-level fine mapping for significantly associated isoforms in 
overlapping 1-Mb windows.

Simulation framework
We adopt techniques from Mancuso et al’s twas_sim protocol96 to 
simulate multivariate isoform expression based on randomly simulated 
genotypes and environmental random noise. First, for n samples, we 
generate a matrix of genotypes for the SNPs within 1 Mb of 22 different 
genes (1 per chromosome) using an LD reference panel of European 
subjects from 1000 Genomes Project48.

Next, we generate a matrix of SNP-isoform effects across different 
causal SNP proportions pc, numbers of isoforms t, and ps proportion 
of the SNP-isoform effects being shared across isoforms of the same 
gene. We then add two matrices of random noise U and ϵ. The first 
matrix U noise represents non-cis-genetic effects on isoforms that  
are correlated between samples and isoforms; we control the  
proportion of variance explained in isoform expression attributed to 
U using a parameter σh. The second matrix ϵ is a matrix of random noise 
that is independent for each isoform, such that ϵi ∼ N (0,σ2e I)   
where σ2e = 1 − σh − h2

g . We generate 10,000 simulations for each  
configuration of the simulation parameters, varying n ∈ {200, 500} , 
pc ∈ {0.001,0.01,0.05 } ,  h2

g ∈ {0.05,0.10,0.25} ,  ps ∈ {0,0.5, 1} ,  a n d 
σh ∈ {0.1,0.25}. Further details are provided in Supplementary Methods 
and summarized in Fig. 2.

We also generate traits under three distinct scenarios, with a con-
tinuous trait with heritability h2

t ∈ {0.01,0.05,0.10} and a GWAS sample 
size of 50,000 (Supplementary Methods):

 (1) Only gene-level expression has a non-zero effect on trait. Here, 
we sum the isoform expression to generate a simulated gene 
expression. We randomly simulate the effect size and scale the 
error to ensure trait heritability.

 (2) Only one isoform has a non-zero effect on the trait. Here, we 
generate a multivariate isoform expression matrix with 2 
isoforms and scale the total gene expression value such that 
one isoform (called the effect isoform) makes up 
pg ∈ {0.10,0.30,0.50,0.70,0.90} proportion of total gene 
expression. We then generate effect size for one of the isoforms 
and scale the error to ensure trait heritability.

 (3) Two isoforms with different effects on traits. Here, we generate a 
multivariate isoform expression matrix with 2 isoforms that 
make up equal portions of the total gene expression. We then 
generate an effect size of α for one isoform and pe α for the other 
isoform, such that pe ∈ {−1, −0.5, −0.2,0.2,0.5, 1}. We then scale 
the error to ensure trait heritability.

To estimate the approximate FPR, we followed the same simula-
tion framework to generate eQTL data and GWAS data. In the GWAS 
data, we set the effect of gene- and isoform-level imputed expression 

to 0 to generate a simulated trait under the null. We then estimated the 
FPR by calculating the proportion of gene-trait associations at P < 0.05 
under this null across 20 sets of 1,000 simulated GWAS panels. We also 
assessed isoform-level fine mapping using FOCUS in a scenario with a 
gene with 5 or 10 isoforms and a single effect isoform. We computed 
the sensitivity of 90% credible sets of isoforms (proportion of credible 
sets that contain the effect isoform) and the number of isoforms in the 
90% credible set.

GTEx processing and model training
We quantified GTEx v8 (ref. 35) RNA-seq samples for 48 tissues using 
Salmon v1.5.2 (ref. 30) in mapping-based mode. We first built a Salmon 
index for a decoy-aware transcriptome consisting of GENCODE v38 
transcript sequences and the full GRCh38 reference genome as decoy 
sequences24. Salmon was then run on FASTQ files with mapping valida-
tion and corrections for sequencing and GC bias. We computed 50 infer-
ential bootstraps for isoform expression. We then imported Salmon 
isoform-level quantifications and aggregated to the gene-level using 
tximeta v1.16.1 (ref. 37). Using edgeR, gene and isoform-level quantifica-
tions underwent TMM-normalization, followed by transformation into 
a log-space using the variance-stabilizing transformation using DESeq2 
v1.38.3 (ref. 97,98). We then residualized isoform-level and gene-level 
expression (as log-transformed CPM) by all tissue-specific covariates 
(clinical, demographic, genotype principal components (PCs), and 
expression PEER factors) used in the original QTL analyses in GTEx. 
We calculated the quantification variance across inferential replicates 
using the computeInfRV() function from fishpond v2.4.1 (ref. 99). We 
computed the isoform fraction using the isoformToIsoformFraction() 
function from IsoformSwitchAnalyzeR v1.20.0 (ref. 100).

SNP genotype calls were derived from Whole Genome Sequencing 
data for samples from individuals of European ancestry, filtering out 
SNPs with minor allele frequency (MAF) less than 5% or that deviated 
from HWE at P < 10−5. We further filtered out SNPs with MAF less than 
1% frequency among the European ancestry samples in 1000 Genomes 
Project48.

Details of the model training pipeline for GTEx are similar to 
those in Extended Data Fig. 8a. Gene-level univariate models were 
trained using elastic net regression41, BLUP in a linear mixed model44, 
and SuSiE43, using all SNPs within 1 Mb of the gene body4,41,43,44. For 
each gene, the best performing model was chosen based on McNe-
mar’s adjusted 5-fold CV R2. We selected only genes with CV R2 ≥ 
0.01. We applied multivariate modeling outlined in isoTWAS to train 
isoform-level predictive models, selecting only those isoform models 
with CV R2 ≥ 0.01. All isoTWAS models generated are publicly available 
(see Data availability).

Developmental brain reference panel processing and model 
training
We quantified developmental frontal cortex22 (N = 205) RNA-seq sam-
ples using Salmon v1.8.030 in mapping-based mode. We used the same 
indexed transcriptome as in the GTEx analysis and ran Salmon with 
mapping validation and corrections for sequencing and GC bias. We 
computed 50 inferential bootstraps for isoform expression using 
Salmon’s Expectation-Maximization algorithm. We then imported 
Salmon isoform-level quantifications and aggregated to the gene-level 
using tximeta37. Using edgeR v3.40.2, gene and isoform-level quantifi-
cations underwent TMM-normalization, followed by transformation 
into a log-space using the variance-stabilizing transformation using 
DESeq2 v1.38.397,98. We then residualized isoform-level and gene-level 
expression (as log-transformed CPM) by covariates (age, sex, 10 geno-
type PCs, 90 and 70 hidden covariates with prior (HCP), respectively). 
Typed SNPs with non-zero alternative alleles, MAF >1%, genotyping rate 
>95%, Hardy Weinberg equilibrium (HWE) P < 10−6 were first imputed 
to TOPMed Freeze 5 using minimac4 and eagle v2.4 (refs. 101,102). We 
then retained biallelic SNPs with imputation accuracy R2 > 0.8, with 
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rsIDs. Finally, we filtered out SNPs with MAF < 0.05 or that deviated 
from Hardy-Weinberg equilibrium at P < 10−6.

Adult brain reference panel processing and model training
Matched genotype and RNA-seq data from adult brain cortex tissue 
from 2,365 individuals were compiled and processed from the Psy-
chENCODE Consortium20 and the Accelerating Medicines Partner-
ship Program for Alzheimer’s Disease (AMP-AD)51, consisting of the 
individual studies BipSeq, BrainGVEX, CommonMind Consortium 
(CMC), CommonMind Consortium’s National Institute of Mental Health 
Human Brain Collection Core (CMC HBCC), Lieber Institute for Brain 
Development-szControl (LIBD_szControl), UCLA-ASD, Religious Orders 
Study and the Memory and Aging Project (ROSMAP), Mount Sinai Brain 
Bank (MSBB) and MayoRNAseq.

Typed genotypes were lifted over to the GRCh38 build using 
CrossMap v.0.6.3 (ref. 103) and then filtered to remove variants 
where the reference allele matched any of the alternate alleles. Geno-
type data from whole genome sequencing (BrainGVEX, UCLA-ASD, 
ROSMAP, MSBB and MayoRNAseq) were further filtered to vari-
ants present on the Infinium Omni5-4 v1.2 array in order to satisfy 
the imputation server’s maximum limit of 20,000 typed variants 
per 20 Mb. All genotype data were further processed with PLINK 
v1.90b6.21 (ref. 104), removing variants with HWE P < 10−6, MAF < 0.01 
or missingness rate > 0.05, and removing samples with missing-
ness rate > 0.1 across typed variants or missingness rate > 0.5 on any 
individual chromosome. Genotype data was prepared for imputa-
tion using the McCarthy Group’s HRC-1000G-check-bim-v4.3.0 tool 
against freeze 8 of the Trans-Omics for Precision Medicine (TOPMed) 
reference panel105. The tool removes A/T and G/C SNPs with MAF > 0.4, 
variants with alleles that differ from the reference panel, variants 
with an allele frequency difference > 0.2 from the reference panel 
and variants not in the reference panel. Additionally, the tool updates 
strand, position and reference/alternate allele assignment to match 
the reference panel.

Genotypes were then passed into the TOPMed Imputation 
Server by individual array batch106. The genotypes were phased with 
Eagle v2.4 and imputed with Minimac4 using the TOPMed reference 
panel101,102. Further QC was performed on the imputed genotypes 
using bcftools v1.11 and PLINK. The imputed genotypes were fil-
tered to well-imputed variants with R2 > 0.8. The arrays were merged 
after filtering to variants that were well imputed in all arrays to be  
merged. Only arrays with at least 400,000 variants after 
pre-imputation QC were merged in order to prevent too many variants 
from dropping out. The merged genotype data were then converted 
to PLINK 1 binary format and further processed with PLINK, removing 
variants with duplicates, HWE P < 10−6, MAF < 0.01 or missingness rate 
> 0.05 and removing samples with missingness rate > 0.1. Samples 
from the same individual were identified by calculating the genetic 
relatedness matrix using SnpArrays.jl and finding sets of samples with 
relatedness > 0.75. From each set of replicates, only the genotyped 
sample from the array with the most variants after pre-imputation 
QC was kept. For model training, only SNPs annotated in HapMap3 
were retained107.

RNA-seq paired reads from each study were sorted by name and 
then converted to FASTQ format using samtools v1.14 (ref. 108). The 
reads were then quantified using salmon v1.8.0 in mapping-based 
mode using a full decoy indexed from GENCODE v38 transcriptome 
and GRCh38 patch 13 assembly30. Quantification was run using a 
standard EM algorithm with library type automatically inferred and 
estimates adjusted for sequence-specific and fragment-level GC 
biases. Bootstrapped abundance estimates were calculated using 50 
bootstrap samples. Isoform-level expression was summarized to the 
gene-level using tximeta37. Only isoforms with 0.1 TPM for more than 
75% of samples were retained. The resulting expression was normalized 
using the variance-stabilizing transformation from DESeq2 (ref. 98).  

Samples with WGCNA network connectivity scores of less than -3 were 
removed as outliers, resulting in a total of 2,115 samples109. Isoform- 
and gene-level expression was then batch-corrected using ComBat 
(sva v3.46.0), using study site as the batch110. Lastly, age, age2, sex, 10 
genotype PCs and hidden covariates (200 for gene expression and 175 
for isoform expression) were removed from the expression matrix111,112. 
The number of HCP were selected by optimizing the number of nominal 
cis-eQTLs and cis-isoQTLs at Bonferroni-corrected P < 0.05, respec-
tively, on a grid from 100 to 300 HCPs, as detected by QTLtools v1.3.1 
(ref. 90).

Details of the model training pipeline are summarized are equiva-
lent to those used to train models in GTEx data.

Gene- and isoform-level trait mapping
We conducted gene- and isoform-level trait mapping for 15 neu-
ropsychiatric traits: attention-deficit hyperactivity disorder (ADHD, 
Ncases = 20,183/Ncontrols = 35,191)53, ALZ (90,338/1,036,225)54, anorexia 
nervosa (AN, 16,992/55,525)66, ASD (18,381/27,969)52, bipolar disor-
der (BP, 41,917/371,549)55, BV (N = 47,316)56, CDG (232,964/494,162)57, 
cortical thickness (CortTH, N = 51,665)58, intracranial volume (ICV, 
N = 32,438)59, major depressive disorder (MDD, 246,363/561,190)60, 
NTSM (N = 449,484)61, obsessive compulsive disorder (OCD, 
2,688/7,037)62, panic and anxiety disorders (PANIC, 2,248/7,992)63, 
post-traumatic stress disorder (PTSD, 32,428/174,227)64 and SCZ 
(69,369/236,642)65. For gene-level trait mapping, we used the weighted 
burden test, followed by the permutation test, as outlined by Gusev 
et al4. For isoform-level trait mapping, we used the stage-wise testing 
procedure outlined in the isoTWAS method. In-sample LD from the 
QTL reference panels was used to calculate the standard error in the 
weighted burden test. For isoforms, irrespective of their correspond-
ing genes, passing both stage-wise tests and the permutation test, we 
employed isoform-level probabilistic fine mapping using FOCUS with 
default parameters50. These methods are summarized in Extended 
Data Fig. 8a.

We estimated the percent increase in effective sample size by 
employing the following heuristic. We convert gene-level association 
P values into χ² test statistics with 1 degree of freedom. For χ² > 1, we 
then calculate the percent increase for isoTWAS-based associations 
versus TWAS-based associations. As the mean of the χ² distribution 
is linearly related to power and sample size113, we can use this percent 
increase in test statistic as a measure of power or effective sample size. 
We defined independent genome-wide significant SNPs in GWAS by LD 
clumping with lead GWAS SNP < 5 ×10−8 with P value used for ranking 
and a R2 threshold of 0.2.

Statistics and reproducibility
For analysis of GTEx, PsychENCODE and AMP-AD data, no statistical 
method was used to predetermine sample size; the maximal sample 
size was determined by the number of individuals with both RNA-seq 
and genotype data. Exclusion criteria for these three datasets are 
included above, in detail. Briefly, as predetermined, GTEx data were 
restricted to individuals of European genetic ancestry to ensure port-
ability of genetic predictions. PsychENCODE and AMP-AD individuals 
were removed if their WGCNA network connectivity scores based on 
isoform-level expression were less than −3; these low scores indicate 
that these samples may be plagued by technical biases that may affect 
the estimation of genetic effects on gene- and isoform-level expres-
sion. No data were collected directly in this work, and, as such, the 
investigators were blinded to allocation. Statistical analyses are sum-
marized above and scripts to reproduce the analysis are listed in the 
code availability statement.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
GTEx genetic, transcriptomic and covariate data were obtained 
through dbGAP approval at accession number phs000424.
v8.p2 (ref. 35). LD reference data from the 1000 Genomes Project  
were obtained at https://www.internationalgenome.org/data-portal/
sample (ref. 48). GENCODE reference transcriptome and assembly was 
downloaded from https://www.gencodegenes.org/human/release_38.
html with GenBank assembly accession GCA_000001405.28  
(ref. 24). GWAS summary statistics were obtained at the following 
links: ADHD (https://www.med.unc.edu/pgc/download-results/)53, 
ALZ (https://ctg.cncr.nl/software/summary_statistics/)54, AN  
(http://w w w.med.unc.edu/pgc/results-and-downloads) 66, 
ASD (https://www.med.unc.edu/pgc/download-results/)52, BP  
(https://www.med.unc.edu/pgc/download-results/)55, BV (https://
ctg.cncr.nl/software/summary_statistics)56, CDG (https://www.med.
unc.edu/pgc/results-and-downloads)57, CortTH (https://enigma.ini.
usc.edu/research/download-enigma-gwas-results/)58, ICV (https://
enigma.ini.usc.edu/research/download-enigma-gwas-results/)59, 
MDD (https://doi.org/10.7488/ds/2458)67, NTSM (https://ctg.cncr.
nl/software/summary_statistics/neuroticism_summary_statis-
tics)61, OCD (https://www.med.unc.edu/pgc/download-results/)62,  
PANIC (https://www.med.unc.edu/pgc/download-results/)63, PTSD 
(https://www.med.unc.edu/pgc/results-and-downloads/)64 and SCZ 
(https://www.med.unc.edu/pgc/download-results/)65. The Devel-
opmental Brain RNA-seq and genotype dataset from Walker et al. 
is available at dbGAP with accession number phs001900 (ref. 22, 
accesible at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001900.v1.p1). The subset of Adult Brain 
RNA-seq and genotype data from the PsychENCODE Consortium 
is available at https://psychencode.synapse.org/DataAccess and 
from AMP-AD is available at https://adknowledgeportal.synapse.org/
Data%20Access (refs. 20,51). GWAS summary statistics and acces-
sion numbers to genotype and RNA-seq data are provided in Sup-
plementary Table 10. isoTWAS models for 48 tissues from GTEx are  
available at https://zenodo.org/record/8047940 (ref. 86), adult 
brain cortex from PsychENCODE and AMP-AD are available at 
https://zenodo.org/record/8048198 (ref. 87), and developmental 
brain cortex from Walker et al. are available at https://zenodo.org/
record/8048137 (ref. 88). All datasets used in this paper are listed 
here with no omissions.

Code availability
isoTWAS is available as an R package at https://github.com/
bhattacharya-a-bt/isotwas (ref. 47). Sample scripts for analyses are 
available at https://github.com/bhattacharya-a-bt/isotwas_manu_
scripts (ref. 114). All relevant codes used in this paper are listed here and 
deposited online with no omissions or restrictions to access.
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Extended Data Fig. 1 | isoTWAS framework assumptions and testing 
framework. (a) Directed acyclic graph (DAG) illustrating causal assumptions 
in isoTWAS: the local genetic variants within 1 Megabase of a gene have direct 
effects on the expression of a gene G and its isoforms; these genetic effects need 
not be shared across isoforms and the gene. Further, the abundance of a gene 
is the sum of abundances of its isoforms. Lastly, the isoform and gene need not 
affect the complex trait through the same path. Genetic variants may have effects 
on the trait through pathways independent of gene and isoform expression. 

(b) Step-wise hypothesis testing in isoTWAS. First, isoform-trait associations 
are estimated Then, associations for isoforms are aggregated to the gene-level 
using the Aggregated Cauchy Association Test (ACAT). These aggregated gene-
level associations are adjusted for multiple testing burden to control the false 
discovery rate (FDR). Lastly, for isoforms of genes that pass gene-level testing, we 
control the family-wide error rate (FWER) using Shaffer’s modified sequentially 
rejective procedure.
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Extended Data Fig. 2 | Prediction comparison in simulation. (a) Boxplots of 
adjusted R2 of prediction of isoform expression (Y axis) across shared isoQTL 
proportion (X axis), for 5 isoforms with isoform heritability (h2

i ) set to 0.05 or 
0.10 (n = 1,000 independent simulations). (b) Boxplots of percent difference in 
adjusted R2 in predicting gene expression between isoTWAS and TWAS models 

from simulations with sample size 200 (compared with sample size 500 in Fig. 2), 
where isoform and gene expression heritability are set to (top) 0.05 and (bottom) 
0.10. For (a-b), all boxplots represent the median, 25% and 75% quantiles, and 
whiskers correspond to the 10% and 90% quantiles.
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Extended Data Fig. 3 | Isoform prediction comparison across 48 GTEx tissues. 
(a) Number of multivariate (cream) and univariate (blue) models predicting 
isoform expression at CV R2 > 0.01 (X axis). (b) Percent difference in CV R2 (X axis) 
of prediction of isoform expression models using multivariate models versus 
univariate models. The label shows the proportion of isoforms with improved 
performance using multivariate models (n = 139-803 biologically independent 
sample, see Supplementary Table 1). (c) Number of isoforms with CV R2 > 0.01 (Y 
axis) using the baseline univariate model (teal, best univariate) and 4 multivariate 

models. (d) On left, median percent difference in R2 of predicting original 
isoform expression using multivariate versus univariate models (left) and gene 
expression using isoTWAS versus TWAS models (right) across increasing number 
of isoforms per gene, colored by models trained in the original dataset and the 
leave-one-out dataset (n = 139–255, see Supplementary Table 1). For (b,d), all 
boxplots represent the median, 25% and 75% quantiles, and whiskers correspond 
to the 10% and 90% quantiles.
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Extended Data Fig. 4 | isoTWAS inclusion criterion and performance gains 
across 48 GTEx tissues. (a) Number of genes that pass TWAS (blue) and isoTWAS 
(red) CV R2 cutoffs to be available for testing in the trait-mapping step (X axis) 
(b) Percent difference in CV R2 (X axis) of prediction of isoform expression 

models using multivariate models versus univariate models. The label shows 
the proportion of isoforms with improved performance using multivariate 
models. All boxplots represent the median, 25% and 75% quantiles, and whiskers 
correspond to the 10% and 90% quantiles.
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Extended Data Fig. 5 | Gene prediction comparison across 48 GTEx tissues. (a) Number of genes predicted at CV R2 > 0.01 using TWAS (blue) and isoTWAS (red). (b) 
Number of genes (left) and isoforms (right) predicted at CV R2 > 0.01 using isoTWAS across 48 GTEx tissues.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | isoTWAS performance across multiple factors. (a) 
(top left) Ratio of number of isoforms predicted at R2 > 0.01 using multivariate 
versus univariate prediction. (top right) Ratio of number of genes passing 
CV threshold using isoTWAS versus TWAS. (bottom left) Median number of 
isoforms predicted at CV R2 > 0.01 in isoTWAS models across increasing number 
of isoforms per gene. The red line shows the line Y = X + 1. (bottom right) Ratio of 
number of genes with CV R2 > 0.01 using isoTWAS versus TWAS. (b-f ) Across bins 
for maximum isoform fraction (b), gene length (c), SNP density (d), sample size 
(e), proportion of shared isoTWAS model effect SNPs (f), (left) ratio of number of 

isoforms predicted at R2 > 0.01 using multivariate versus univariate prediction, 
(middle) ratio of number of genes passing CV threshold using isoTWAS versus 
TWAS, and (right) ratio of number of genes with CV R2 > 0.01 using isoTWAS 
versus TWAS. (g-h) Across bins for mean counts (g) and quantification variance 
(h) of isoforms and genes, (left) ratio of number of isoforms predicted at R2 > 0.01 
using multivariate versus univariate prediction and (right) Ratio of number 
of genes with CV R2 > 0.01 using isoTWAS versus TWAS. For (a-h), all boxplots 
represent the median, 25% and 75% quantiles, and whiskers correspond to the 10% 
and 90% quantiles.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Power comparison in simulation. (a) Across 20 iterations 
of 1,000 simulations, boxplots of false positive rate to detect a gene-trait 
association using Cauchy-aggregated P values of isoform-trait associations (red) 
and gene-level TWAS (blue) from weighted burden tests. We calculate the false 
positive rate as the proportion of the 1,000 tests that give P > 0.05. All boxplots 
represent the median, 25% and 75% quantiles, and whiskers correspond to the 
10% and 90% quantiles. (b) (Scenario 1) Power to detect gene-trait association 
(proportion of tests with P < 2.5 × 10−6 using weighted burden test, Y axis) across 
number of total isoforms per gene (X axis). Points are shaped by causal isoQTL 
proportion and colored by method. (Scenario 2) Power to detect gene-trait 
association across proportion of gene expression explained by effect isoform 
(X axis). (Scenario 3) Power to detect gene-trait association across ratio of effect 

sizes of 2 effect isoforms (X axis). All plots for (1–3) are facetted by proportion of 
shared isoQTLs (top margin) and proportion of expression heritability attributed 
to shared non-genetic effects across isoforms (right margin). For (2–3), points are 
shaped by number of isoforms per gene and colored by method. Here, expression 
heritability is set of 0.05, trait heritability is set to 0.1, and causal proportion 
of Scenarios 2–3 is set of 0.01. (c) Sensitivity and mean set size of 90% credible 
set using FOCUS to finemap isoform-trait associations for a single gene, across 
causal isoQTL proportion (X axis). Points are colored by trait heritability and 
shaped by the number of isoforms per gene. Plots are facetted by proportion of 
shared isoQTLs (top margin) and proportion of expression heritability attributed 
to shared non-genetic effects across isoforms (right margin). Line-ranges in show 
a 95% jackknife confidence interval (n = 1,000 independent simulations).
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Extended Data Fig. 8 | Discovery comparison in public data. (a) Data sources 
for eQTL reference data, GWAS cohorts, and reference LD data are provided 
on the left (black). The full gene-level TWAS (red) and isoTWAS (blue) are 
summarized on the right. (b) Number of gene-trait associations (Y axis) using 
TWAS (red) and isoTWAS (blue) across trait (X axis), faceting by tissue (top 
margin) and threshold (right margin: adjusted weighted burden test P < 0.05 and 
permutation test P < 0.05, top; in 90% credible set using FOCUS fine-mapping, 

bottom). (c) Number of isoform-trait associations (Y axis) using isoTWAS 
across trait (X axis), faceting by tissue (top margin) and threshold (right margin: 
adjusted weighted burden test P < 0.05 and permutation test P < 0.05, top; in 90% 
credible set using FOCUS fine-mapping, bottom). (d) Distribution of number of 
genes (left) and isoforms (right) in risk region and in 90% credible set using TWAS 
and isoTWAS.
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Extended Data Fig. 9 | Test statistic inflation comparison in public data. QQ-plots of gene-level P values using TWAS (red) and isoTWAS (blue) across 15 traits.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Biological relevance of gene-trait associations 
detected by isoTWAS. (a) Lollipop plot of enrichment ratio (X axis) of ontologies 
(Y axis) for isoTWAS-prioritized genes associated at adjusted weighted burden 
test P < 0.05 and permutation test P < 0.05. Points are shaped by tissue type 
(adult or developmental) and colored by ontology type (biological process, cell 
component, molecular function). (b-d) For ENST00000681794 association 
with BV (b) and ENST00000492957 with BV (c), Manhattan plots of GWAS, 
eQTL, and isoQTL signal colored by LD (top), boxplots of gene (red) and isoform 
(blue) expression (Y axis) by genotype (X axis) (bottom left), and forest plot of 

lead isoQTL effect size using two-sided Wald-type t-test from linear regression 
and 95% confidence interval with isoform (blue), gene (red), and trait (black) 
(bottom right, n = 2,115 biologically independent samples). Vertical gray lines 
indicate the transcription start and end sites for each gene, and the horizontal 
gray line indicates P = 5 × 10−8 for GWAS and 10−6 for QTLs. All boxplots represent 
the median, 25% and 75% quantiles, and whiskers correspond to the 10% and 90% 
quantiles. (d) Comparison of exon and intron structure of ENST00000681794 
and ENST00000492957, based on Gencode v38 reference.

http://www.nature.com/naturegenetics




   




	Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human b ...
	Results
	The isoTWAS framework
	Improved isoform and gene expression prediction
	Calibrated null and improved power across architectures
	Improved trait mapping across 15 neuropsychiatric GWAS
	isoTWAS identifies trait associations undetectable by TWAS

	Discussion
	Online content
	Fig. 1 Isoform-centric approach for complex trait mapping and prioritization of disease mechanisms at a genetic locus.
	Fig. 2 IsoTWAS models predict gene expression with more accuracy than TWAS models in simulated data.
	Fig. 3 Multivariate isoform-level models overperform gene-level models in predicting total gene expression.
	Fig. 4 IsoTWAS improves power to detect gene-trait associations in simultations, especially when genetic effects differ across isoforms.
	Fig. 5 Isoform-level trait mapping increases discovery of genetic associations over gene-level trait mapping.
	Fig. 6 isoTWAS implicates isoforms of AKT3, CUL3, HSPD1, and PCLO in genetic associations with psychiatric traits.
	Extended Data Fig. 1 isoTWAS framework assumptions and testing framework.
	Extended Data Fig. 2 Prediction comparison in simulation.
	Extended Data Fig. 3 Isoform prediction comparison across 48 GTEx tissues.
	Extended Data Fig. 4 isoTWAS inclusion criterion and performance gains across 48 GTEx tissues.
	Extended Data Fig. 5 Gene prediction comparison across 48 GTEx tissues.
	Extended Data Fig. 6 isoTWAS performance across multiple factors.
	Extended Data Fig. 7 Power comparison in simulation.
	Extended Data Fig. 8 Discovery comparison in public data.
	Extended Data Fig. 9 Test statistic inflation comparison in public data.
	Extended Data Fig. 10 Biological relevance of gene-trait associations detected by isoTWAS.




